Mots-clés : Poisson kernel, Lebesgue measure
@article{MZM_2009_86_3_a11,
author = {N. N. Osipov},
title = {The {Function} $G_\lambda^*$ as the {Norm} of a {Calder\'on{\textendash}Zygmund} {Operator}},
journal = {Matemati\v{c}eskie zametki},
pages = {421--428},
year = {2009},
volume = {86},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a11/}
}
N. N. Osipov. The Function $G_\lambda^*$ as the Norm of a Calderón–Zygmund Operator. Matematičeskie zametki, Tome 86 (2009) no. 3, pp. 421-428. http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a11/
[1] I. M. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR | Zbl
[2] C. Fefferman, “Inequalities for strongly singular convolution operators”, Acta Math., 124 (1970), 9–36 | MR | Zbl
[3] P. W. Jones, P. F. X. Müller, “Conditioned Brownian motion and multipliers into $SL^\infty$”, Geom. Funct. Anal., 14:2 (2004), 319–379 | MR | Zbl
[4] D. S. Anisimov, S. V. Kislyakov, “Dvoinye singulyarnye integraly: interpolyatsiya i ispravlenie”, Algebra i analiz, 16:5 (2004), 1–33 | MR | Zbl
[5] S. V. Kisliakov, “Interpolation of $H^p$-spaces: some recent developments”, Function spaces, interpolation spaces, and related topics (Haifa, 1995), Israel Math. Conf. Proc., 13, Bar-Ilan Univ., Ramat Gan, 1999, 102–140 | MR | Zbl