The Function $G_\lambda^*$ as the Norm of a Calder\'on--Zygmund Operator
Matematičeskie zametki, Tome 86 (2009) no. 3, pp. 421-428
Voir la notice de l'article provenant de la source Math-Net.Ru
We describe a new approach to one of the quadratic functions in the Littlewood–Paley theory, namely, to the function $G_\lambda^*$. It is shown that some of its properties can be obtained from the general theory of operators of Calderón–Zygmund type (which, apparently, has not been considered applicable in this context). There are applications to interpolation theory.
Keywords:
Calderón–Zygmund operator, Hilbert space, Brownian motion, Banach space, Hardy class $H^p$, Cauchy's inequality.
Mots-clés : Poisson kernel, Lebesgue measure
Mots-clés : Poisson kernel, Lebesgue measure
@article{MZM_2009_86_3_a11,
author = {N. N. Osipov},
title = {The {Function} $G_\lambda^*$ as the {Norm} of a {Calder\'on--Zygmund} {Operator}},
journal = {Matemati\v{c}eskie zametki},
pages = {421--428},
publisher = {mathdoc},
volume = {86},
number = {3},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a11/}
}
N. N. Osipov. The Function $G_\lambda^*$ as the Norm of a Calder\'on--Zygmund Operator. Matematičeskie zametki, Tome 86 (2009) no. 3, pp. 421-428. http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a11/