Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2009_86_3_a11, author = {N. N. Osipov}, title = {The {Function} $G_\lambda^*$ as the {Norm} of a {Calder\'on--Zygmund} {Operator}}, journal = {Matemati\v{c}eskie zametki}, pages = {421--428}, publisher = {mathdoc}, volume = {86}, number = {3}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a11/} }
N. N. Osipov. The Function $G_\lambda^*$ as the Norm of a Calder\'on--Zygmund Operator. Matematičeskie zametki, Tome 86 (2009) no. 3, pp. 421-428. http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a11/
[1] I. M. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR | Zbl
[2] C. Fefferman, “Inequalities for strongly singular convolution operators”, Acta Math., 124 (1970), 9–36 | MR | Zbl
[3] P. W. Jones, P. F. X. Müller, “Conditioned Brownian motion and multipliers into $SL^\infty$”, Geom. Funct. Anal., 14:2 (2004), 319–379 | MR | Zbl
[4] D. S. Anisimov, S. V. Kislyakov, “Dvoinye singulyarnye integraly: interpolyatsiya i ispravlenie”, Algebra i analiz, 16:5 (2004), 1–33 | MR | Zbl
[5] S. V. Kisliakov, “Interpolation of $H^p$-spaces: some recent developments”, Function spaces, interpolation spaces, and related topics (Haifa, 1995), Israel Math. Conf. Proc., 13, Bar-Ilan Univ., Ramat Gan, 1999, 102–140 | MR | Zbl