Necessary Conditions for the Weak Generalized Localization of Fourier Series with ``Lacunary Sequence of Partial Sums''
Matematičeskie zametki, Tome 86 (2009) no. 3, pp. 408-420.

Voir la notice de l'article provenant de la source Math-Net.Ru

It has been established that, on the subsets $\mathbb{T}^N=[-\pi,\pi]^N$ describing a cross $W$ composed of $N$-dimensional blocks, $W_{x_sx_t}=\Omega_{x_sx_t}\times [-\pi,\pi]^{N-2}$ ($\Omega_{x_sx_t}$ is an open subset of $[-\pi,\pi]^2$) in the classes $L_p(\mathbb{T}^N)$, $p>1$, a weak generalized localization holds, for $N\ge3$, almost everywhere for multiple trigonometric Fourier series when to the rectangular partial sums $S_n(x;f)$ ($x\in\mathbb{T}^N$, $f\in L_p$) of these series corresponds the number $n=(n_1,\dots,n_N)\in\mathbb Z_{+}^{N}$ some components $n_j$ of which are elements of lacunary sequences. In the present paper, we prove a number of statements showing that the structural and geometric characteristics of such subsets are sharp in the sense of the numbers (generating $W$) of the $N$-dimensional blocks $W_{x_sx_t}$ as well as of the structure and geometry of $W_{x_sx_t}$. In particular, it is proved that it is impossible to take an arbitrary measurable two-dimensional set or an open three-dimensional set as the base of the block.
Keywords: multiple trigonometric Fourier series, $n$-block, lacunary sequence, weak generalized localization, measurable set, Euclidean space, rectangular partial sum.
@article{MZM_2009_86_3_a10,
     author = {O. V. Lifantseva},
     title = {Necessary {Conditions} for the {Weak} {Generalized} {Localization} of {Fourier} {Series} with {``Lacunary} {Sequence} of {Partial} {Sums''}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {408--420},
     publisher = {mathdoc},
     volume = {86},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a10/}
}
TY  - JOUR
AU  - O. V. Lifantseva
TI  - Necessary Conditions for the Weak Generalized Localization of Fourier Series with ``Lacunary Sequence of Partial Sums''
JO  - Matematičeskie zametki
PY  - 2009
SP  - 408
EP  - 420
VL  - 86
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a10/
LA  - ru
ID  - MZM_2009_86_3_a10
ER  - 
%0 Journal Article
%A O. V. Lifantseva
%T Necessary Conditions for the Weak Generalized Localization of Fourier Series with ``Lacunary Sequence of Partial Sums''
%J Matematičeskie zametki
%D 2009
%P 408-420
%V 86
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a10/
%G ru
%F MZM_2009_86_3_a10
O. V. Lifantseva. Necessary Conditions for the Weak Generalized Localization of Fourier Series with ``Lacunary Sequence of Partial Sums''. Matematičeskie zametki, Tome 86 (2009) no. 3, pp. 408-420. http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a10/

[1] I. L. Bloshanskii, “O ravnoskhodimosti razlozhenii v kratnyi trigonometricheskii ryad Fure i integral Fure”, Matem. zametki, 18:2 (1975), 153–168 | MR | Zbl

[2] I. L. Bloshanskii, “Obobschennaya lokalizatsiya pochti vsyudu i skhodimost dvoinykh ryadov Fure”, Dokl. AN SSSR, 242:1 (1978), 11–13 | MR | Zbl

[3] I. L. Bloshanskii, “O kriteriyakh slaboi obobschennoi lokalizatsii v $n$-mernom prostranstve”, Dokl. AN SSSR, 271:6 (1983), 1294–1298 | MR | Zbl

[4] I. L. Bloshanskii, “Dva kriteriya slaboi obobschennoi lokalizatsii dlya kratnykh trigonometricheskikh ryadov Fure funktsii iz $L_p$, $p\ge1$”, Izv. AN SSSR. Ser. matem., 49:2 (1985), 243–282 | MR | Zbl

[5] I. L. Bloshanskii, O. V. Lifantseva, “Slabaya obobschennaya lokalizatsiya dlya kratnykh ryadov Fure, pryamougolnye chastichnye summy kotorykh rassmatrivayutsya po nekotoroi podposledovatelnosti”, Matem. zametki, 84:3 (2008), 334–347 | MR | Zbl

[6] I. L. Bloshanskii, “O geometrii izmerimykh mnozhestv v $N$-mernom prostranstve, na kotorykh spravedliva obobschennaya lokalizatsiya dlya kratnykh trigonometricheskikh ryadov Fure funktsii iz $L_p$, $p>1$”, Matem. sb., 121:1 (1983), 87–110 | MR | Zbl

[7] C. Fefferman, “On the divergence of multiple Fourier series”, Bull. Amer. Math. Soc., 77:2 (1971), 191–195 | MR | Zbl

[8] I. L. Bloshanskii, “Generalized localization and convergence tests for double trigonometric Fourier series of functions from $L_p$, $p>1$”, Anal. Math., 7:1 (1981), 3–36 | MR | Zbl