Necessary Conditions for the Weak Generalized Localization of Fourier Series with ``Lacunary Sequence of Partial Sums''
Matematičeskie zametki, Tome 86 (2009) no. 3, pp. 408-420
Voir la notice de l'article provenant de la source Math-Net.Ru
It has been established that, on the subsets $\mathbb{T}^N=[-\pi,\pi]^N$ describing a cross $W$ composed of $N$-dimensional blocks, $W_{x_sx_t}=\Omega_{x_sx_t}\times [-\pi,\pi]^{N-2}$ ($\Omega_{x_sx_t}$ is an open subset of $[-\pi,\pi]^2$) in the classes $L_p(\mathbb{T}^N)$, $p>1$, a weak generalized localization holds, for $N\ge3$, almost everywhere for multiple trigonometric Fourier series when to the rectangular partial sums $S_n(x;f)$ ($x\in\mathbb{T}^N$, $f\in L_p$) of these series corresponds the number $n=(n_1,\dots,n_N)\in\mathbb Z_{+}^{N}$ some components $n_j$ of which are elements of lacunary sequences. In the present paper, we prove a number of statements showing that the structural and geometric characteristics of such subsets are sharp in the sense of the numbers (generating $W$) of the $N$-dimensional blocks $W_{x_sx_t}$ as well as of the structure and geometry of $W_{x_sx_t}$. In particular, it is proved that it is impossible to take an arbitrary measurable two-dimensional set or an open three-dimensional set as the base of the block.
Keywords:
multiple trigonometric Fourier series, $n$-block, lacunary sequence, weak generalized localization, measurable set, Euclidean space, rectangular partial sum.
@article{MZM_2009_86_3_a10,
author = {O. V. Lifantseva},
title = {Necessary {Conditions} for the {Weak} {Generalized} {Localization} of {Fourier} {Series} with {``Lacunary} {Sequence} of {Partial} {Sums''}},
journal = {Matemati\v{c}eskie zametki},
pages = {408--420},
publisher = {mathdoc},
volume = {86},
number = {3},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a10/}
}
TY - JOUR AU - O. V. Lifantseva TI - Necessary Conditions for the Weak Generalized Localization of Fourier Series with ``Lacunary Sequence of Partial Sums'' JO - Matematičeskie zametki PY - 2009 SP - 408 EP - 420 VL - 86 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a10/ LA - ru ID - MZM_2009_86_3_a10 ER -
%0 Journal Article %A O. V. Lifantseva %T Necessary Conditions for the Weak Generalized Localization of Fourier Series with ``Lacunary Sequence of Partial Sums'' %J Matematičeskie zametki %D 2009 %P 408-420 %V 86 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a10/ %G ru %F MZM_2009_86_3_a10
O. V. Lifantseva. Necessary Conditions for the Weak Generalized Localization of Fourier Series with ``Lacunary Sequence of Partial Sums''. Matematičeskie zametki, Tome 86 (2009) no. 3, pp. 408-420. http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a10/