On Meromorphic Continuation in a Fixed Direction
Matematičeskie zametki, Tome 86 (2009) no. 3, pp. 323-327.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we prove a local boundary version of the well-known Rothstein lemma about the meromorphic continuation with respect to one of the complex variables. The statement is simple, and the proof is based on the well-known Hadamard formulas for the radii of meromorphy, on recent results of Imomkulov about the boundary properties of sequences of plurisubharmonic functions, and on the Rothstein lemma.
Keywords: meromorphic function, meromorphic continuation, analytic function, subharmonic function, plurisubharmonic function, radius of meromorphy
Mots-clés : Hadamard determinant.
@article{MZM_2009_86_3_a0,
     author = {A. A. Atamuratov},
     title = {On {Meromorphic} {Continuation} in a {Fixed} {Direction}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--327},
     publisher = {mathdoc},
     volume = {86},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a0/}
}
TY  - JOUR
AU  - A. A. Atamuratov
TI  - On Meromorphic Continuation in a Fixed Direction
JO  - Matematičeskie zametki
PY  - 2009
SP  - 323
EP  - 327
VL  - 86
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a0/
LA  - ru
ID  - MZM_2009_86_3_a0
ER  - 
%0 Journal Article
%A A. A. Atamuratov
%T On Meromorphic Continuation in a Fixed Direction
%J Matematičeskie zametki
%D 2009
%P 323-327
%V 86
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a0/
%G ru
%F MZM_2009_86_3_a0
A. A. Atamuratov. On Meromorphic Continuation in a Fixed Direction. Matematičeskie zametki, Tome 86 (2009) no. 3, pp. 323-327. http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a0/

[1] F. Hartogs, “Zur Theorie der analytischen Funktionen mehrerer unabhängiger Veränderlichen, insbesondere über die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen fortschreiten”, Math. Ann., 62:1 (1906), 1–88 | MR | Zbl

[2] W. Rothstein, “Ein neuer Beweis des Hartogsschen Hauptsatzes und seine Ausdehnung auf meromorphe Funktionen”, Math. Z., 53 (1950), 84–95 | MR | Zbl

[3] E. Sakai, “A note on meromorphic functions in several complex variables”, Mem. Fac. Sci. Kyusyu Univ. Ser. A. Math., 11 (1957), 75–80 | MR | Zbl

[4] E. Sakai, “Meromorphic or holomorphic completion of a Reinhardt domain”, Nagoya Math. J., 38 (1970), 1–12 | MR | Zbl

[5] S. A. Imomkulov, “O golomorfnom prodolzhenii funktsii, zadannykh na granichnom puchke kompleksnykh pryamykh”, Izv. RAN. Ser. matem., 69:2 (2005), 125–144 | MR | Zbl

[6] E. Bedford, B. A. Taylor, “A new capacity for plurisubharmonic functions”, Acta Math., 149:1–2 (1982), 1–40 | MR | Zbl

[7] A. S. Sadullaev, “Ratsionalnye approksimatsii i plyuripolyarnye mnozhestva”, Matem. sb., 119:1 (1982), 96–118 | MR | Zbl

[8] J. Hadamard, “Essai sur l'étude des fonctions données par leur développement de Taylor”, J. Math. (4), 8 (1892), 101–186 | Zbl

[9] A. S. Sadullaev, “Granichnaya teorema edinstvennosti v $\mathbf C^n$”, Matem. sb., 101:4 (1976), 568–583 | MR | Zbl

[10] A. S. Sadullaev, S. A. Imomkulov, “Prodolzhenie separatno-analiticheskikh funktsii, zadannykh na chasti granitsy oblasti”, Matem. zametki, 79:2 (2006), 234–243 | MR | Zbl

[11] M. V. Kazaryan, “Meromorfnoe prodolzhenie po gruppam peremennykh”, Matem. sb., 125:3 (1984), 384–397 | MR | Zbl