The Problem of Determining a Function of the Memory of a Medium and of the Regular Part of a Pulsed Source
Matematičeskie zametki, Tome 86 (2009) no. 2, pp. 202-212
Voir la notice de l'article provenant de la source Math-Net.Ru
Consider the problem of finding two coefficients one of which is under the sign of the integral in the hyperbolic equation and represents the memory of a medium and the other determines the regular part of an impulse source. Additionally, the Fourier transform of the trace of the solution of the direct problem on the hyperplane $y=0$ for two different values of the transformation parameter is given. We establish an estimate of the stability of the solution of the inverse problem under consideration and also the uniqueness theorem.
Keywords:
hyperbolic equation, impulse source, memory of a medium, method of successive approximations, $\delta$ function.
Mots-clés : Fourier transform, Volterra equation
Mots-clés : Fourier transform, Volterra equation
@article{MZM_2009_86_2_a5,
author = {D. K. Durdiev},
title = {The {Problem} of {Determining} a {Function} of the {Memory} of a {Medium} and of the {Regular} {Part} of a {Pulsed} {Source}},
journal = {Matemati\v{c}eskie zametki},
pages = {202--212},
publisher = {mathdoc},
volume = {86},
number = {2},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a5/}
}
TY - JOUR AU - D. K. Durdiev TI - The Problem of Determining a Function of the Memory of a Medium and of the Regular Part of a Pulsed Source JO - Matematičeskie zametki PY - 2009 SP - 202 EP - 212 VL - 86 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a5/ LA - ru ID - MZM_2009_86_2_a5 ER -
D. K. Durdiev. The Problem of Determining a Function of the Memory of a Medium and of the Regular Part of a Pulsed Source. Matematičeskie zametki, Tome 86 (2009) no. 2, pp. 202-212. http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a5/