On the Relation between Topological Entropy and Entropy Dimension
Matematičeskie zametki, Tome 86 (2009) no. 2, pp. 280-289
Voir la notice de l'article provenant de la source Math-Net.Ru
For the Lipschitz mapping of a metric compact set into itself, there is a classical upper bound on topological entropy, namely, the product of the entropy dimension of the compact set by the logarithm of the Lipschitz constant. The Ghys conjecture is that, by varying the metric, one can approximate the upper bound arbitrarily closely to the exact value of the topological entropy. In the present paper, we obtain a criterion for the validity of the Ghys conjecture for an individual mapping. Applying this criterion, we prove the Ghys conjecture for hyperbolic mappings.
Keywords:
topological entropy, topological dimension, Lipschitz mapping, hyperbolic mapping, hyperbolic homeomorphism.
Mots-clés : Ghys conjecture
Mots-clés : Ghys conjecture
@article{MZM_2009_86_2_a10,
author = {P. S. Saltykov},
title = {On the {Relation} between {Topological} {Entropy} and {Entropy} {Dimension}},
journal = {Matemati\v{c}eskie zametki},
pages = {280--289},
publisher = {mathdoc},
volume = {86},
number = {2},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a10/}
}
P. S. Saltykov. On the Relation between Topological Entropy and Entropy Dimension. Matematičeskie zametki, Tome 86 (2009) no. 2, pp. 280-289. http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a10/