On the Relation between Topological Entropy and Entropy Dimension
Matematičeskie zametki, Tome 86 (2009) no. 2, pp. 280-289.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the Lipschitz mapping of a metric compact set into itself, there is a classical upper bound on topological entropy, namely, the product of the entropy dimension of the compact set by the logarithm of the Lipschitz constant. The Ghys conjecture is that, by varying the metric, one can approximate the upper bound arbitrarily closely to the exact value of the topological entropy. In the present paper, we obtain a criterion for the validity of the Ghys conjecture for an individual mapping. Applying this criterion, we prove the Ghys conjecture for hyperbolic mappings.
Keywords: topological entropy, topological dimension, Lipschitz mapping, hyperbolic mapping, hyperbolic homeomorphism.
Mots-clés : Ghys conjecture
@article{MZM_2009_86_2_a10,
     author = {P. S. Saltykov},
     title = {On the {Relation} between {Topological} {Entropy} and {Entropy} {Dimension}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {280--289},
     publisher = {mathdoc},
     volume = {86},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a10/}
}
TY  - JOUR
AU  - P. S. Saltykov
TI  - On the Relation between Topological Entropy and Entropy Dimension
JO  - Matematičeskie zametki
PY  - 2009
SP  - 280
EP  - 289
VL  - 86
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a10/
LA  - ru
ID  - MZM_2009_86_2_a10
ER  - 
%0 Journal Article
%A P. S. Saltykov
%T On the Relation between Topological Entropy and Entropy Dimension
%J Matematičeskie zametki
%D 2009
%P 280-289
%V 86
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a10/
%G ru
%F MZM_2009_86_2_a10
P. S. Saltykov. On the Relation between Topological Entropy and Entropy Dimension. Matematičeskie zametki, Tome 86 (2009) no. 2, pp. 280-289. http://geodesic.mathdoc.fr/item/MZM_2009_86_2_a10/

[1] R. L. Adler, A. G. Konheim, M. H. McAndrew, “Topological entropy”, Trans. Amer. Math. Soc., 114 (1965), 309–319 | MR | Zbl

[2] A. G. Kushnirenko, “Otsenka sverkhu entropii klassicheskoi dinamicheskoi sistemy”, Dokl. AN SSSR, 161:3 (1965), 37–38 | MR | Zbl

[3] A. B. Katok, B. Khasselblat, Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999 | MR | Zbl

[4] Yu. S. Ilyashenko, V. Li, Nelokalnye bifurkatsii, Novye matematicheskie distsipliny, MTsNMO, M., 1999 | MR | Zbl

[5] V. M. Alekseev, M. V. Yakobson, “Symbolic dynamics and hyperbolic dynamic systems”, Phys. Rep., 75:5 (1981), 287–325 | MR