The Behavior of Bounded Solutions of Quasilinear Elliptic Equations on Manifolds
Matematičeskie zametki, Tome 86 (2009) no. 1, pp. 51-64
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the behavior of bounded solutions of quasilinear elliptic equations on a special class of Riemannian manifolds. We obtain sufficient conditions for the convergence of solutions to zero.
Keywords:
quasilinear elliptic equation, Riemannian manifold, $p$-harmonic function, maximum principle, Minkowski's inequality, Harnack's inequality, capacity.
@article{MZM_2009_86_1_a4,
author = {A. B. Ivanov},
title = {The {Behavior} of {Bounded} {Solutions} of {Quasilinear} {Elliptic} {Equations} on {Manifolds}},
journal = {Matemati\v{c}eskie zametki},
pages = {51--64},
year = {2009},
volume = {86},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a4/}
}
A. B. Ivanov. The Behavior of Bounded Solutions of Quasilinear Elliptic Equations on Manifolds. Matematičeskie zametki, Tome 86 (2009) no. 1, pp. 51-64. http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a4/