Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2009_86_1_a11, author = {A. I. Zykin}, title = {Brauer--Siegel {Theorem} for {Families} of {Elliptic} {Surfaces} over {Finite} {Fields}}, journal = {Matemati\v{c}eskie zametki}, pages = {148--150}, publisher = {mathdoc}, volume = {86}, number = {1}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a11/} }
A. I. Zykin. Brauer--Siegel Theorem for Families of Elliptic Surfaces over Finite Fields. Matematičeskie zametki, Tome 86 (2009) no. 1, pp. 148-150. http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a11/
[1] R. Brauer, Amer. J. Math., 69:2 (1947), 243–250 | DOI | MR | Zbl
[2] M. A. Tsfasman, S. G. Vlăduţ, Mosc. Math. J., 2:2 (2002), 329–402 | MR | Zbl
[3] M. A. Tsfasman, Coding Theory and Algebraic Geometry (Luminy, 1991), Lecture Notes in Math., 1518, Springer-Verlag, Berlin, 1992, 178–192 | DOI | MR | Zbl
[4] A. Zykin, Arithmetic, Geometry, Cryptography and Coding Theory, Proceedings of the 11th conference on $\mathrm{AGC^{2}T}$ (Marseille, 2007), Contemp. Math., 487, Institut de Mathématiques de Luminy, Marseille, 2009, 195–206
[5] M. Hindry, Diophantine Geometry, CRM Series, 4, Ed. Norm., Pisa, 2007, 197–219 | MR | Zbl
[6] B. E. Kunyavskii, M. A. Tsfasman, Int. Math. Res. Not. IMRN, 2008, no. 8, Art. ID rnn009, 9 pp | MR | Zbl
[7] A. Brumer, Invent. Math., 109:3 (1992), 445–472 | DOI | MR | Zbl
[8] H. Iwaniec, W. Luo, P. Sarnak, Inst. Hautes Études Sci. Publ. Math., 91 (2000), 55–131 | DOI | MR | Zbl