Brauer--Siegel Theorem for Families of Elliptic Surfaces over Finite Fields
Matematičeskie zametki, Tome 86 (2009) no. 1, pp. 148-150.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: Brauer–Siegel theorem, elliptic surface over a finite field, asymptotically exact family of curves.
@article{MZM_2009_86_1_a11,
     author = {A. I. Zykin},
     title = {Brauer--Siegel {Theorem} for {Families} of {Elliptic} {Surfaces} over {Finite} {Fields}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {148--150},
     publisher = {mathdoc},
     volume = {86},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a11/}
}
TY  - JOUR
AU  - A. I. Zykin
TI  - Brauer--Siegel Theorem for Families of Elliptic Surfaces over Finite Fields
JO  - Matematičeskie zametki
PY  - 2009
SP  - 148
EP  - 150
VL  - 86
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a11/
LA  - ru
ID  - MZM_2009_86_1_a11
ER  - 
%0 Journal Article
%A A. I. Zykin
%T Brauer--Siegel Theorem for Families of Elliptic Surfaces over Finite Fields
%J Matematičeskie zametki
%D 2009
%P 148-150
%V 86
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a11/
%G ru
%F MZM_2009_86_1_a11
A. I. Zykin. Brauer--Siegel Theorem for Families of Elliptic Surfaces over Finite Fields. Matematičeskie zametki, Tome 86 (2009) no. 1, pp. 148-150. http://geodesic.mathdoc.fr/item/MZM_2009_86_1_a11/

[1] R. Brauer, Amer. J. Math., 69:2 (1947), 243–250 | DOI | MR | Zbl

[2] M. A. Tsfasman, S. G. Vlăduţ, Mosc. Math. J., 2:2 (2002), 329–402 | MR | Zbl

[3] M. A. Tsfasman, Coding Theory and Algebraic Geometry (Luminy, 1991), Lecture Notes in Math., 1518, Springer-Verlag, Berlin, 1992, 178–192 | DOI | MR | Zbl

[4] A. Zykin, Arithmetic, Geometry, Cryptography and Coding Theory, Proceedings of the 11th conference on $\mathrm{AGC^{2}T}$ (Marseille, 2007), Contemp. Math., 487, Institut de Mathématiques de Luminy, Marseille, 2009, 195–206

[5] M. Hindry, Diophantine Geometry, CRM Series, 4, Ed. Norm., Pisa, 2007, 197–219 | MR | Zbl

[6] B. E. Kunyavskii, M. A. Tsfasman, Int. Math. Res. Not. IMRN, 2008, no. 8, Art. ID rnn009, 9 pp | MR | Zbl

[7] A. Brumer, Invent. Math., 109:3 (1992), 445–472 | DOI | MR | Zbl

[8] H. Iwaniec, W. Luo, P. Sarnak, Inst. Hautes Études Sci. Publ. Math., 91 (2000), 55–131 | DOI | MR | Zbl