Contractibility of Half-Spaces of Partial Convexity
Matematičeskie zametki, Tome 85 (2009) no. 6, pp. 915-926.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Fink–Wood problem on the contractibility of half-spaces of partial convexity is studied. It is proved that there exists a connected non-simply-connected half-space of orthoconvexity in the three-dimensional space, which disproves the Fink–Wood conjecture in the general case. In a special case, it is proved that, if the set of directions of partial convexity contains a basis of the linear $n$-dimensional space, then all directed half-spaces of partial convexity are contractible.
Keywords: partial convexity, orthoconvexity, half-space of partial convexity, directed half-space, Fink–Wood problem.
@article{MZM_2009_85_6_a8,
     author = {V. G. Naidenko},
     title = {Contractibility of {Half-Spaces} of {Partial} {Convexity}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {915--926},
     publisher = {mathdoc},
     volume = {85},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_6_a8/}
}
TY  - JOUR
AU  - V. G. Naidenko
TI  - Contractibility of Half-Spaces of Partial Convexity
JO  - Matematičeskie zametki
PY  - 2009
SP  - 915
EP  - 926
VL  - 85
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_6_a8/
LA  - ru
ID  - MZM_2009_85_6_a8
ER  - 
%0 Journal Article
%A V. G. Naidenko
%T Contractibility of Half-Spaces of Partial Convexity
%J Matematičeskie zametki
%D 2009
%P 915-926
%V 85
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_6_a8/
%G ru
%F MZM_2009_85_6_a8
V. G. Naidenko. Contractibility of Half-Spaces of Partial Convexity. Matematičeskie zametki, Tome 85 (2009) no. 6, pp. 915-926. http://geodesic.mathdoc.fr/item/MZM_2009_85_6_a8/

[1] V. G. Naidenko, “Chastichnaya vypuklost”, Matem. zametki, 75:2 (2004), 222–235 | MR | Zbl

[2] V. G. Naidenko, “Ob odnom variante chastichnoi vypuklosti”, Vestn. NAN Belarusi. Ser. fiz.-matem. nauk, 2004, no. 2, 102–106 | MR

[3] V. G. Naidenko, “Postroenie chastichno vypuklykh obolochek”, Vestn. NAN Belarusi. Ser. fiz.-matem. nauk, 2002, no. 4, 48–53 | MR | Zbl

[4] N. N. Metelskii, V. G. Naidenko, “Algoritmicheskie aspekty chastichnoi vypuklosti”, Matem. zametki, 68:3 (2000), 399–410 | MR | Zbl

[5] E. Fink, D. Wood, Restricted-Orientation Convexity, Monogr. Theoret. Comput. Sci. EATCS Ser., Springer-Verlag, Berlin, 2004 | MR | Zbl

[6] B. Grünbaum, Convex Polytopes, Interscience Publ., New York, 1967 | MR | Zbl

[7] V. V. Gorokhovik, E. A. Semenkova, “Klassifikatsiya poluprostranstv po tipam v beskonechnomernykh vektornykh prostranstvakh”, Matem. zametki, 64:2 (1998), 191–198 | MR | Zbl