A Theorem of Paley--Wiener Type for Ultradistributions
Matematičeskie zametki, Tome 85 (2009) no. 6, pp. 894-914.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the Fourier–Laplace transformation of functionals, we give a description of the spaces dual to the spaces of rapidly decreasing infinitely differentiable functions on an unbounded closed convex set in $\mathbb R^n$.
Mots-clés : ultradistribution, Fourier–Laplace transformation, Lebesgue measure.
Keywords: Paley–Wiener theorem, holomorphic function, plurisubharmonic function
@article{MZM_2009_85_6_a7,
     author = {I. Kh. Musin and P. V. Fedotova},
     title = {A {Theorem} of {Paley--Wiener} {Type} for {Ultradistributions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {894--914},
     publisher = {mathdoc},
     volume = {85},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_6_a7/}
}
TY  - JOUR
AU  - I. Kh. Musin
AU  - P. V. Fedotova
TI  - A Theorem of Paley--Wiener Type for Ultradistributions
JO  - Matematičeskie zametki
PY  - 2009
SP  - 894
EP  - 914
VL  - 85
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_6_a7/
LA  - ru
ID  - MZM_2009_85_6_a7
ER  - 
%0 Journal Article
%A I. Kh. Musin
%A P. V. Fedotova
%T A Theorem of Paley--Wiener Type for Ultradistributions
%J Matematičeskie zametki
%D 2009
%P 894-914
%V 85
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_6_a7/
%G ru
%F MZM_2009_85_6_a7
I. Kh. Musin; P. V. Fedotova. A Theorem of Paley--Wiener Type for Ultradistributions. Matematičeskie zametki, Tome 85 (2009) no. 6, pp. 894-914. http://geodesic.mathdoc.fr/item/MZM_2009_85_6_a7/

[1] V. S. Vladimirov, Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR | Zbl

[2] J. W. de Roever, Complex Fourier Transformation and Analytic Functionals with Unbounded Carriers, Math. Centre Tracts, 89, Mathematisch Centrum, Amsterdam, 1978 | MR | Zbl

[3] B. A. Taylor, “Analytically uniform spaces of infinitely differentiable functions”, Comm. Pure Appl. Math., 24:1 (1971), 39–51 | DOI | MR | Zbl

[4] V. S. Vladimirov, Yu. N. Drozhzhinov, B. I. Zavyalov, Mnogomernye tauberovy teoremy dlya obobschennye funktsii, Nauka, M., 1986 | MR | Zbl

[5] V. S. Vladimirov, “O funktsiyakh, golomorfnykh v trubchatykh konusakh”, Izv. AN SSSR. Ser. matem., 27:1 (1963), 75–100 | MR | Zbl

[6] V. S. Vladimirov, Metody teorii funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964 | MR | Zbl

[7] J. W. de Roever, “Analytic representations and Fourier transforms of analytic functionals in $Z'$ carried by the real space”, SIAM J. Math. Anal., 9:6 (1978), 996–1019 | DOI | MR | Zbl

[8] Zh. Sebashtyan-i-Silva, “O nekotorykh klassakh lokalno vypuklykh prostranstv, vazhnykh v prilozheniyakh”, Matematika. Sb. per., 1:1 (1957), 60–77

[9] V. V. Zharinov, “Kompaktnye semeistva LVP i prostranstva FS i DFS”, UMN, 34:4 (1979), 97–131 | MR | Zbl

[10] I. Kh. Musin, “O preobrazovanii Fure–Laplasa funktsionalov na vesovom prostranstve beskonechno differentsiruemykh funktsii v $\mathbb R^n$”, Matem. sb., 195:10 (2004), 83–108 | MR | Zbl

[11] I. Kh. Musin, “O preobrazovanii Fure–Laplasa funktsionalov na vesovom prostranstve beskonechno differentsiruemykh funktsii”, Matem. sb., 191:10 (2000), 57–86 | MR | Zbl

[12] R. Edvards, Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1969 | MR | Zbl

[13] V. V. Napalkov, Uravneniya svertki v mnogomernykh prostranstvakh, Nauka, M., 1982 | MR | Zbl

[14] S. Mandelbroit, Primykayuschie ryady. Regulyarizatsiya posledovatelnostei. Primeneniya, IL, M., 1955 | MR | Zbl

[15] A. P. Robertson, V. Dzh. Robertson, Topologicheskie vektornye prostranstva, Mir, M., 1967 | MR | Zbl