Orthogonality Measures for Orthogonal Matrix Polynomials with Periodic Coefficients of Recurrence Relations
Matematičeskie zametki, Tome 85 (2009) no. 6, pp. 944-946
Cet article a éte moissonné depuis la source Math-Net.Ru
Mots-clés :
orthogonal matrix polynomial, Hilbert transformation
Keywords: matrix measure, Borel set, Chebyshev polynomial, Hermitian matrix, matrix continued fraction.
Keywords: matrix measure, Borel set, Chebyshev polynomial, Hermitian matrix, matrix continued fraction.
@article{MZM_2009_85_6_a12,
author = {R. R. Vasyukov},
title = {Orthogonality {Measures} for {Orthogonal} {Matrix} {Polynomials} with {Periodic} {Coefficients} of {Recurrence} {Relations}},
journal = {Matemati\v{c}eskie zametki},
pages = {944--946},
year = {2009},
volume = {85},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_6_a12/}
}
TY - JOUR AU - R. R. Vasyukov TI - Orthogonality Measures for Orthogonal Matrix Polynomials with Periodic Coefficients of Recurrence Relations JO - Matematičeskie zametki PY - 2009 SP - 944 EP - 946 VL - 85 IS - 6 UR - http://geodesic.mathdoc.fr/item/MZM_2009_85_6_a12/ LA - ru ID - MZM_2009_85_6_a12 ER -
R. R. Vasyukov. Orthogonality Measures for Orthogonal Matrix Polynomials with Periodic Coefficients of Recurrence Relations. Matematičeskie zametki, Tome 85 (2009) no. 6, pp. 944-946. http://geodesic.mathdoc.fr/item/MZM_2009_85_6_a12/
[1] A. J. Duran, J. Approx. Theory, 100:2 (1999), 304–344 | DOI | MR | Zbl
[2] A. J. Duran, Canad. J. Math., 48:6 (1996), 1180–1195 | MR | Zbl
[3] M. J. Zygmunt, Linear Algebra Appl., 340:1–3 (2002), 155–168 | DOI | MR | Zbl
[4] Ya. L. Geronimus, Zapiski nauchno-issledovatelskogo in-ta matem., mekh. i Kharkovsk. matem. ob-va, 15:2 (1938), 57–64 | Zbl
[5] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1988 | MR | Zbl