Fuchsian Systems with Completely Reducible Monodromy
Matematičeskie zametki, Tome 85 (2009) no. 6, pp. 817-825
Cet article a éte moissonné depuis la source Math-Net.Ru
The solvability of the Riemann–Hilbert problem for representations $\chi=\chi_1\oplus\chi_2$ having the form of a direct sum is considered. It is proved that any representation $\chi_1$ can be realized as a direct summand in the monodromy representation $\chi$ of a Fuchsian system. Other results are also obtained, which suggest a simple method for constructing counterexamples to the Riemann–Hilbert problem.
Keywords:
Riemann–Hilbert problem, decomposable Fuchsian system, completely reducible monodromy, (semi)stable bundle with connection, holomorphic (meromorphic) function.
@article{MZM_2009_85_6_a1,
author = {I. V. Vyugin},
title = {Fuchsian {Systems} with {Completely} {Reducible} {Monodromy}},
journal = {Matemati\v{c}eskie zametki},
pages = {817--825},
year = {2009},
volume = {85},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_6_a1/}
}
I. V. Vyugin. Fuchsian Systems with Completely Reducible Monodromy. Matematičeskie zametki, Tome 85 (2009) no. 6, pp. 817-825. http://geodesic.mathdoc.fr/item/MZM_2009_85_6_a1/
[1] A. A. Bolibrukh, Fuksovy differentsialnye uravneniya i golomorfnye rassloeniya, Sovremennye lektsionnye kursy, MTsNMO, M., 2000
[2] A. A. Bolibrukh, 21-ya problema Gilberta dlya lineinykh fuksovykh sistem, Tr. MIAN, 206, Nauka, M., 1994 | MR | Zbl
[3] I. V. Vyugin, “Nerazlozhimaya fuksova sistema s razlozhimym predstavleniem monodromii”, Matem. zametki, 80:4 (2006), 501–508 | MR | Zbl
[4] A. A. Bolibrukh, “Problema Rimana–Gilberta na kompaktnoi rimanovoi poverkhnosti”, Monodromiya v zadachakh algebraicheskoi geometrii i differentsialnykh uravnenii, Tr. MIAN, 238, Nauka, M., 2002, 55–69 | MR | Zbl
[5] H. Esnault, C. Hertling, Semistable Bundles on Curves and Reducible Representation of the Fundamental Group, arXiv: math.AG/0101194