On the Fano Variety of a Class of Real Four-Dimensional Cubics
Matematičeskie zametki, Tome 85 (2009) no. 5, pp. 711-720.

Voir la notice de l'article provenant de la source Math-Net.Ru

The topological type of the real part of the Fano variety parametrizing the set of lines on a nonsingular real hypersurface of degree three in a five-dimensional projective space is evaluated provided that the hypersurface belongs to a special rigid projective class. In the paper by Finashin and Kharlamov on the rigid projective classification of real four-dimensional cubics, this class is said to be irregular. The results of the author of the present paper from the article devoted to the equivariant topological classification of the Fano varieties of real cubic fourfolds are also used.
Keywords: cubic fourfold, Fano variety, topological type, coarse isotopy class, locally trivial bundle, K3 surface, equivariant diffeomorphism.
Mots-clés : small perturbation, cusp
@article{MZM_2009_85_5_a6,
     author = {V. A. Krasnov},
     title = {On the {Fano} {Variety} of a {Class} of {Real} {Four-Dimensional} {Cubics}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {711--720},
     publisher = {mathdoc},
     volume = {85},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a6/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - On the Fano Variety of a Class of Real Four-Dimensional Cubics
JO  - Matematičeskie zametki
PY  - 2009
SP  - 711
EP  - 720
VL  - 85
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a6/
LA  - ru
ID  - MZM_2009_85_5_a6
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T On the Fano Variety of a Class of Real Four-Dimensional Cubics
%J Matematičeskie zametki
%D 2009
%P 711-720
%V 85
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a6/
%G ru
%F MZM_2009_85_5_a6
V. A. Krasnov. On the Fano Variety of a Class of Real Four-Dimensional Cubics. Matematičeskie zametki, Tome 85 (2009) no. 5, pp. 711-720. http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a6/

[1] C. H. Clemens, P. A. Griffits, “The intermediate Jacobian of the cubic threefold”, Ann. of Math. (2), 95:2 (1972), 281–356 | DOI | MR | Zbl

[2] V. A. Rokhlin, “Kompleksnye topologicheskie kharakteristiki veschestvennykh algebraicheskikh krivykh”, UMN, 33:5 (1978), 77–89 | MR | Zbl

[3] A. B. Altman, S. L. Kleiman, “Foundations of the theory of Fano schemes”, Compositio Math., 34:1 (1977), 3–47 | MR | Zbl

[4] V. V. Nikulin, “Tselochislennye simmetricheskie bilineinye formy i nekotorye ikh geometricheskie prilozheniya”, Izv. AN SSSR. Ser. matem., 43:1 (1979), 111–177 | MR | Zbl

[5] S. Finashin, V. Kharlamov, “Deformation classes of real four-dimensional cubic hypersurfaces”, J. Algebraic Geom., 17:4 (2008), 677–707 ; arXiv: math AG/0607137v1 | MR | Zbl

[6] V. A. Krasnov, “Ekvivariantnaya topologicheskaya klassifikatsiya mnogoobrazii Fano veschestvennykh chetyrekhmernykh kubik”, Matem. zametki, 85:4 (2009), 603–615

[7] B. Hassett, “Special cubic fourfolds”, Compositio Math., 120:1 (2000), 1–23 | DOI | MR | Zbl

[8] V. A. Krasnov, “Zhestkaya izotopicheskaya klassifikatsiya veschestvennykh trekhmernykh kubik”, Izv. RAN. Ser. matem., 70:4 (2006), 91–134 | MR | Zbl

[9] Dzh. Milnor, Osobye tochki kompleksnykh giperpoverkhnostei, Mir, M., 1971 | MR | Zbl

[10] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii. Monodromiya i asimptotika integralov, Nauka, M., 1984 | MR | Zbl