On the Fano Variety of a Class of Real Four-Dimensional Cubics
Matematičeskie zametki, Tome 85 (2009) no. 5, pp. 711-720
Voir la notice de l'article provenant de la source Math-Net.Ru
The topological type of the real part of the Fano variety parametrizing the set of lines on a nonsingular real hypersurface of degree three in a five-dimensional projective space is evaluated provided that the hypersurface belongs to a special rigid projective class. In the paper by Finashin and Kharlamov on the rigid projective classification of real four-dimensional cubics, this class is said to be irregular. The results of the author of the present paper from the article devoted to the equivariant topological classification of the Fano varieties of real cubic fourfolds are also used.
Keywords:
cubic fourfold, Fano variety, topological type, coarse isotopy class, locally trivial bundle, K3 surface, equivariant diffeomorphism.
Mots-clés : small perturbation, cusp
Mots-clés : small perturbation, cusp
@article{MZM_2009_85_5_a6,
author = {V. A. Krasnov},
title = {On the {Fano} {Variety} of a {Class} of {Real} {Four-Dimensional} {Cubics}},
journal = {Matemati\v{c}eskie zametki},
pages = {711--720},
publisher = {mathdoc},
volume = {85},
number = {5},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a6/}
}
V. A. Krasnov. On the Fano Variety of a Class of Real Four-Dimensional Cubics. Matematičeskie zametki, Tome 85 (2009) no. 5, pp. 711-720. http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a6/