Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2009_85_5_a4, author = {V. V. Grushin}, title = {Asymptotic {Behavior} of {Eigenvalues} of the {Laplace} {Operator} in {Thin} {Infinite} {Tubes}}, journal = {Matemati\v{c}eskie zametki}, pages = {687--701}, publisher = {mathdoc}, volume = {85}, number = {5}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a4/} }
V. V. Grushin. Asymptotic Behavior of Eigenvalues of the Laplace Operator in Thin Infinite Tubes. Matematičeskie zametki, Tome 85 (2009) no. 5, pp. 687-701. http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a4/
[1] V. P. Maslov, “Asimptotika sobstvennykh funktsii uravneniya $\Delta u+k^2u=0$ s kraevymi usloviyami na ekvidistantnykh krivykh i rasseyanie elektromagnitnykh voln v volnovode”, Dokl. AN SSSR, 123:4 (1958), 631–633 | MR | Zbl
[2] V. P. Maslov, “Mathematical aspects of integral optics”, Russ. J. Math. Phys., 8:1 (2001), 83–105 | MR | Zbl
[3] V. P. Maslov, E. M. Vorobev, “Ob odnomodovykh otkrytykh rezonatorakh”, Dokl. AN SSSR, 179:3 (1968), 558–561
[4] V. V. Belov, S. Yu. Dobrokhotov, S. O. Sinitsyn, “Asimptoticheskie resheniya uravneniya Shrëdingera v tonkikh trubkakh”, Tr. In-ta matem. i mekh. UrO RAN, 9:1 (2003), 15–25 | MR | Zbl
[5] V. V. Belov, S. Yu. Dobrokhotov, S. O. Sinitsyn, T. Ya. Tudorovskii, “Kvaziklassicheskoe priblizhenie i kanonicheskii operator Maslova dlya nerelyativistskikh uravnenii kvantovoi mekhaniki v nanotrubkakh”, Dokl. RAN, 393:4 (2003), 460–464 | MR
[6] V. V. Belov, S. Yu. Dobrokhotov, T. Ya. Tudorovskii, “Quantum and classical dynamics of electron in thin curved tubes with spin and external electromagnetic fields taken into account”, Russ. J. Math. Phys., 11:1 (2004), 109–119 | MR | Zbl
[7] V. V. Belov, S. Yu. Dobrokhotov, T. Ya. Tudorovskii, “Asimptoticheskie resheniya nerelyativistskikh uravnenii kvantovoi mekhaniki v iskrivlennykh nanotrubkakh. I. Reduktsiya k prostranstvenno-odnomernym uravneniyam”, TMF, 141:2 (2004), 267–303 | MR
[8] V. V. Belov, S. Yu. Dobrokhotov, V. P. Maslov, T. Ya. Tudorovskii, “Obobschennyi adiabaticheskii printsip dlya opisaniya dinamiki elektrona v iskrivlennykh nanostrukturakh”, UFN, 175:9 (2005), 1004–1010 | DOI
[9] P. Duclos, P. Exner, “Curvature-induced bound states in quantum waveguides in two and three dimensions”, Rev. Math. Phys., 7:1 (1995), 73–102 | DOI | MR | Zbl
[10] P. Exner, P. Šeba, “Bound states in curved quantum waveguides”, J. Math. Phys., 30:11 (1989), 2574–2580 | DOI | MR | Zbl
[11] P. Exner, “Bound states in quantum waveguides of a slowly decaying curvature”, J. Math. Phys., 34:1 (1993), 23–28 | DOI | MR | Zbl
[12] P. Exner, “A quantum pipette”, J. Phys. A, 28:18 (1995), 5323–5330 | DOI | MR | Zbl
[13] W. Bulla, F. Gesztesy, W. Renger, B. Simon, “Weakly couped bound states in quantum waveguides”, Proc. Amer. Math. Soc., 125:5 (1997), 1487–1495 | DOI | MR | Zbl
[14] P. Exner, S. A. Vugalter, “Bound states in a locally deformed waveguide: the critical case”, Lett. Math. Phys., 39:1 (1997), 59–68 | DOI | MR | Zbl
[15] D. Borisov, P. Exner, R. Gadyl'shin, D. Krejčiřík, “Bound states in a weakly deformed strips and layers”, Ann. Henri Poincaré, 2:3 (2001), 553–572 | DOI | MR | Zbl
[16] V. V. Grushin, “O sobstvennykh znacheniyakh finitno vozmuschennogo operatora Laplasa v beskonechnykh tsilindricheskikh oblastyakh”, Matem. zametki, 75:3 (2004), 360–371 | MR | Zbl
[17] V. V. Grushin, “Asimptoticheskoe povedenie sobstvennykh znachenii operatora Shrëdingera s poperechnym potentsialom v slabo iskrivlennykh beskonechnykh tsilindrakh”, Matem. zametki, 77:5 (2005), 656–664 | MR | Zbl
[18] R. R. Gadylshin, “O lokalnykh vozmuscheniyakh kvantovykh volnovodov”, TMF, 145:3 (2005), 358–371 | MR
[19] L. I. Magarill, M. V. Entin, “Elektrony v krivolineinoi kvantovoi provoloke”, ZhETF, 123:4 (2003), 867–876
[20] L. Hörmander, Linear Partial Differential Operators, Grundlehren Math. Wiss., 116, Springer-Verlag, Berlin, 1963 ; Л. Хермандер, Линейные дифференциальные операторы с частными производными, Мир, М., 1965 | MR | Zbl | MR | Zbl
[21] M. Reed, B. Simon, Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press, New York, 1978. ; М. Рид, Б. Саймон, Методы современной математической физики. Т. 4. Анализ операторов, Мир, М., 1982 | MR | Zbl | MR | Zbl
[22] B. Chenaud, P. Duclos, P. Freitas, D. Krejčiřík, “Geometrically induced discrete spectrum in curved tubes”, Differential Geom. Appl., 23:2 (2005), 95–105 | DOI | MR | Zbl
[23] M. S. Agranovich, M. I. Vishik, “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, UMN, 19:3 (1964), 53–161 | MR | Zbl
[24] M. Reed, B. Simon, Methods of Modern Mathematical Physics. I. Functional Analysis, Academic Press, New York, 1972 ; М. Рид, Б. Саймон, Методы современной математической физики. Т. 1. Функциональный анализ, Мир, М., 1977 | MR | Zbl | MR
[25] V. V. Grushin, “Ob odnom klasse psevdodifferentsialnykh operatorov, vyrozhdayuschikhsya na podmnogoobrazii”, Matem. sb., 84:2 (1971), 163–195 | MR | Zbl