Birational Composition of Quadratic Forms over a Local Field
Matematičeskie zametki, Tome 85 (2009) no. 5, pp. 661-670.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f(X)$ and $g(Y)$ be nondegenerate quadratic forms of dimensions $m$ and $n$, respectively, over $K$, $\operatorname{char} K\ne 2$. The problem of birational composition of $f(X)$ and $g(Y)$ is considered: When is the product $f(X)\cdot g(Y)$ birationally equivalent over $K$ to a quadratic form $h(Z)$ over $K$ of dimension $m+n$? The solution of the birational composition problem for anisotropic quadratic forms over $K$ in the case of $m=n=2$ is given. The main result of the paper is the complete solution of the birational composition problem for forms $f(X)$ and $g(Y)$ over a local field $P$, $\operatorname{char}P\ne 2$.
Keywords: quadratic form, anisotropic quadratic form, binary quadratic form, local field
Mots-clés : birational composition, birational composition, Hilbert symbol.
@article{MZM_2009_85_5_a2,
     author = {A. A. Bondarenko},
     title = {Birational {Composition} of {Quadratic} {Forms} over a {Local} {Field}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {661--670},
     publisher = {mathdoc},
     volume = {85},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a2/}
}
TY  - JOUR
AU  - A. A. Bondarenko
TI  - Birational Composition of Quadratic Forms over a Local Field
JO  - Matematičeskie zametki
PY  - 2009
SP  - 661
EP  - 670
VL  - 85
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a2/
LA  - ru
ID  - MZM_2009_85_5_a2
ER  - 
%0 Journal Article
%A A. A. Bondarenko
%T Birational Composition of Quadratic Forms over a Local Field
%J Matematičeskie zametki
%D 2009
%P 661-670
%V 85
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a2/
%G ru
%F MZM_2009_85_5_a2
A. A. Bondarenko. Birational Composition of Quadratic Forms over a Local Field. Matematičeskie zametki, Tome 85 (2009) no. 5, pp. 661-670. http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a2/

[1] A. Hurwitz, “Über die Kompsition der quadratischen Formen”, Math. Ann., 88:1–2 (1922), 1–25 | DOI | MR | Zbl

[2] J. Radon, “Lineare Scharen orthogonalen Matrizen”, Abh. Math. Sem. Univ. Humburg, 1:1 (1922), 1–14 | DOI

[3] K. Y. Lam, “Topological methods for studying the composition of quadratic forms”, Quadratic and Hermitian Forms (Hamilton, Ont., 1983), CMS Conf. Proc., 4, Amer. Math. Soc., Providence, RI, 1984, 173–192 | MR | Zbl

[4] A. Pfister, “Multiplicative quadratische Formen”, Arch. Math. (Basel), 16:1 (1965), 363–370 | DOI | MR | Zbl

[5] V. P. Platonov, V. I. Chernousov, “O ratsionalnosti kanonicheskikh spinornykh mnogoobrazii”, Dokl. AN SSSR, 252:4 (1980), 796–800 | MR | Zbl

[6] A. A. Bondarenko, “O biratsionalnoi kompozitsii kvadratichnykh form”, Izv. NAN Belarusi. Cer. fiz.-matem. nauk, 2007, no. 4, 56–61

[7] M. Knebusch, W. Scharlau, Algebraic Theory of Quadratic Forms. Generic methods and Pfister forms. Notes taken by Heisook Lee, DMV Sem., 1, Birkhäuser, Boston, MA, 1980 | MR | Zbl

[8] Zh.-P. Serr, Kurs arifmetiki, Mir, M., 1972 | MR | Zbl

[9] O. T. O'Meara, Introduction to Quadratic Forms, Grundlehren Math. Wiss., 117, Springer-Verlag, Berlin, 1971 | MR | Zbl