Birational Composition of Quadratic Forms over a Local Field
Matematičeskie zametki, Tome 85 (2009) no. 5, pp. 661-670

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f(X)$ and $g(Y)$ be nondegenerate quadratic forms of dimensions $m$ and $n$, respectively, over $K$, $\operatorname{char} K\ne 2$. The problem of birational composition of $f(X)$ and $g(Y)$ is considered: When is the product $f(X)\cdot g(Y)$ birationally equivalent over $K$ to a quadratic form $h(Z)$ over $K$ of dimension $m+n$? The solution of the birational composition problem for anisotropic quadratic forms over $K$ in the case of $m=n=2$ is given. The main result of the paper is the complete solution of the birational composition problem for forms $f(X)$ and $g(Y)$ over a local field $P$, $\operatorname{char}P\ne 2$.
Keywords: quadratic form, anisotropic quadratic form, binary quadratic form, local field
Mots-clés : birational composition, birational composition, Hilbert symbol.
@article{MZM_2009_85_5_a2,
     author = {A. A. Bondarenko},
     title = {Birational {Composition} of {Quadratic} {Forms} over a {Local} {Field}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {661--670},
     publisher = {mathdoc},
     volume = {85},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a2/}
}
TY  - JOUR
AU  - A. A. Bondarenko
TI  - Birational Composition of Quadratic Forms over a Local Field
JO  - Matematičeskie zametki
PY  - 2009
SP  - 661
EP  - 670
VL  - 85
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a2/
LA  - ru
ID  - MZM_2009_85_5_a2
ER  - 
%0 Journal Article
%A A. A. Bondarenko
%T Birational Composition of Quadratic Forms over a Local Field
%J Matematičeskie zametki
%D 2009
%P 661-670
%V 85
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a2/
%G ru
%F MZM_2009_85_5_a2
A. A. Bondarenko. Birational Composition of Quadratic Forms over a Local Field. Matematičeskie zametki, Tome 85 (2009) no. 5, pp. 661-670. http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a2/