Semiclassical Approximation for the Non-Self-Adjoint Sturm–Liouville Problem with the Potential $q(x)=x^4-a^2x^2$
Matematičeskie zametki, Tome 85 (2009) no. 5, pp. 792-796
Cet article a éte moissonné depuis la source Math-Net.Ru
Keywords:
semiclassical approximation, differential operator, discrete spectrum, Stokes graph.
Mots-clés : Sturm–Liouville problem
Mots-clés : Sturm–Liouville problem
@article{MZM_2009_85_5_a15,
author = {V. I. Pokotilo},
title = {Semiclassical {Approximation} for the {Non-Self-Adjoint} {Sturm{\textendash}Liouville} {Problem} with the {Potential} $q(x)=x^4-a^2x^2$},
journal = {Matemati\v{c}eskie zametki},
pages = {792--796},
year = {2009},
volume = {85},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a15/}
}
TY - JOUR AU - V. I. Pokotilo TI - Semiclassical Approximation for the Non-Self-Adjoint Sturm–Liouville Problem with the Potential $q(x)=x^4-a^2x^2$ JO - Matematičeskie zametki PY - 2009 SP - 792 EP - 796 VL - 85 IS - 5 UR - http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a15/ LA - ru ID - MZM_2009_85_5_a15 ER -
V. I. Pokotilo. Semiclassical Approximation for the Non-Self-Adjoint Sturm–Liouville Problem with the Potential $q(x)=x^4-a^2x^2$. Matematičeskie zametki, Tome 85 (2009) no. 5, pp. 792-796. http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a15/