Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2009_85_5_a15, author = {V. I. Pokotilo}, title = {Semiclassical {Approximation} for the {Non-Self-Adjoint} {Sturm--Liouville} {Problem} with the {Potential} $q(x)=x^4-a^2x^2$}, journal = {Matemati\v{c}eskie zametki}, pages = {792--796}, publisher = {mathdoc}, volume = {85}, number = {5}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a15/} }
TY - JOUR AU - V. I. Pokotilo TI - Semiclassical Approximation for the Non-Self-Adjoint Sturm--Liouville Problem with the Potential $q(x)=x^4-a^2x^2$ JO - Matematičeskie zametki PY - 2009 SP - 792 EP - 796 VL - 85 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a15/ LA - ru ID - MZM_2009_85_5_a15 ER -
%0 Journal Article %A V. I. Pokotilo %T Semiclassical Approximation for the Non-Self-Adjoint Sturm--Liouville Problem with the Potential $q(x)=x^4-a^2x^2$ %J Matematičeskie zametki %D 2009 %P 792-796 %V 85 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a15/ %G ru %F MZM_2009_85_5_a15
V. I. Pokotilo. Semiclassical Approximation for the Non-Self-Adjoint Sturm--Liouville Problem with the Potential $q(x)=x^4-a^2x^2$. Matematičeskie zametki, Tome 85 (2009) no. 5, pp. 792-796. http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a15/