Semiclassical Approximation for the Non-Self-Adjoint Sturm–Liouville Problem with the Potential $q(x)=x^4-a^2x^2$
Matematičeskie zametki, Tome 85 (2009) no. 5, pp. 792-796 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Keywords: semiclassical approximation, differential operator, discrete spectrum, Stokes graph.
Mots-clés : Sturm–Liouville problem
@article{MZM_2009_85_5_a15,
     author = {V. I. Pokotilo},
     title = {Semiclassical {Approximation} for the {Non-Self-Adjoint} {Sturm{\textendash}Liouville} {Problem} with the {Potential} $q(x)=x^4-a^2x^2$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {792--796},
     year = {2009},
     volume = {85},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a15/}
}
TY  - JOUR
AU  - V. I. Pokotilo
TI  - Semiclassical Approximation for the Non-Self-Adjoint Sturm–Liouville Problem with the Potential $q(x)=x^4-a^2x^2$
JO  - Matematičeskie zametki
PY  - 2009
SP  - 792
EP  - 796
VL  - 85
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a15/
LA  - ru
ID  - MZM_2009_85_5_a15
ER  - 
%0 Journal Article
%A V. I. Pokotilo
%T Semiclassical Approximation for the Non-Self-Adjoint Sturm–Liouville Problem with the Potential $q(x)=x^4-a^2x^2$
%J Matematičeskie zametki
%D 2009
%P 792-796
%V 85
%N 5
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a15/
%G ru
%F MZM_2009_85_5_a15
V. I. Pokotilo. Semiclassical Approximation for the Non-Self-Adjoint Sturm–Liouville Problem with the Potential $q(x)=x^4-a^2x^2$. Matematičeskie zametki, Tome 85 (2009) no. 5, pp. 792-796. http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a15/

[1] M. V. Fedoryuk, Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1983 | MR | Zbl

[2] S. N. Tumanov, A. A. Shkalikov, Izv. RAN. Ser. matem., 66:4 (2002), 177–204 | MR | Zbl