A System of Recurrence Relations for Rational Approximations of the Euler Constant
Matematičeskie zametki, Tome 85 (2009) no. 5, pp. 782-787.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain the system of recurrence relations for rational approximations of the Euler constant generalizing the recurrence relations obtained earlier by Aptekarev with coauthors. The leading coefficient of the recurrence relations of this system is 1, which can be used to verify that the generated numbers are integers.
Mots-clés : Euler constant, multiple orthogonal polynomials, Rodrigues formula.
Keywords: rational approximation
@article{MZM_2009_85_5_a13,
     author = {D. N. Tulyakov},
     title = {A {System} of {Recurrence} {Relations} for {Rational} {Approximations} of the {Euler} {Constant}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {782--787},
     publisher = {mathdoc},
     volume = {85},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a13/}
}
TY  - JOUR
AU  - D. N. Tulyakov
TI  - A System of Recurrence Relations for Rational Approximations of the Euler Constant
JO  - Matematičeskie zametki
PY  - 2009
SP  - 782
EP  - 787
VL  - 85
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a13/
LA  - ru
ID  - MZM_2009_85_5_a13
ER  - 
%0 Journal Article
%A D. N. Tulyakov
%T A System of Recurrence Relations for Rational Approximations of the Euler Constant
%J Matematičeskie zametki
%D 2009
%P 782-787
%V 85
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a13/
%G ru
%F MZM_2009_85_5_a13
D. N. Tulyakov. A System of Recurrence Relations for Rational Approximations of the Euler Constant. Matematičeskie zametki, Tome 85 (2009) no. 5, pp. 782-787. http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a13/

[1] Ratsionalnye priblizheniya postoyannoi Eilera i rekurrentnye sootnosheniya, Sbornik statei, Sovr. probl. matem., 9, ed. A. I. Aptekarev, MIAN, M., 2007, 84 pp.

[2] D. V. Khristoforov, “Rekurrentnye sootnosheniya dlya approksimatsii Ermita–Pade nekotoroi sistemy iz chetyrekh funktsii markovskogo i stiltesovskogo tipa”, Ratsionalnye priblizheniya postoyannoi Eilera i rekurrentnye sootnosheniya, Sbornik statei, Sovr. probl. matem., 9, MIAN, M., 2007, 11–26 | DOI

[3] A. I. Bogolyubskii, “Rekurrentnye sootnosheniya s ratsionalnymi koeffitsientami dlya nekotorykh sovmestno ortogonalnykh polinomov, zadavaemykh formuloi Rodriga”, Ratsionalnye priblizheniya postoyannoi Eilera i rekurrentnye sootnosheniya, Sbornik statei, Sovr. probl. matem., 9, MIAN, M., 2007, 27–35 | DOI

[4] A. I. Aptekarev, D. N. Tulyakov, “Chetyrekhchlennye rekurrentnye sootnosheniya dlya $\gamma$-form”, Ratsionalnye priblizheniya postoyannoi Eilera i rekurrentnye sootnosheniya, Sbornik statei, Sovr. probl. matem., 9, MIAN, M., 2007, 37–43 | DOI

[5] A. I. Aptekarev, V. G. Lysov, “Asimptotika $\gamma$-form, generiruemykh sovmestno ortogonalnymi mnogochlenami”, Ratsionalnye priblizheniya postoyannoi Eilera i rekurrentnye sootnosheniya, Sbornik statei, Sovr. probl. matem., 9, MIAN, M., 2007, 55–62 | DOI

[6] A. I. Aptekarev, A. Branquinho, W. Van Assche, “Multiple orthogonal polynomials for classical weights”, Trans. Amer. Math. Soc., 355:10 (2003), 3887–3914 | DOI | MR | Zbl

[7] B. A. Kalyagin, “Approksimatsii Ermita–Pade i spektralnyi analiz nesimmetrichnykh operatorov”, Matem. sb., 185:6 (1994), 79–100 | MR | Zbl