Keywords: rational approximation
@article{MZM_2009_85_5_a13,
author = {D. N. Tulyakov},
title = {A {System} of {Recurrence} {Relations} for {Rational} {Approximations} of the {Euler} {Constant}},
journal = {Matemati\v{c}eskie zametki},
pages = {782--787},
year = {2009},
volume = {85},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a13/}
}
D. N. Tulyakov. A System of Recurrence Relations for Rational Approximations of the Euler Constant. Matematičeskie zametki, Tome 85 (2009) no. 5, pp. 782-787. http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a13/
[1] Ratsionalnye priblizheniya postoyannoi Eilera i rekurrentnye sootnosheniya, Sbornik statei, Sovr. probl. matem., 9, ed. A. I. Aptekarev, MIAN, M., 2007, 84 pp.
[2] D. V. Khristoforov, “Rekurrentnye sootnosheniya dlya approksimatsii Ermita–Pade nekotoroi sistemy iz chetyrekh funktsii markovskogo i stiltesovskogo tipa”, Ratsionalnye priblizheniya postoyannoi Eilera i rekurrentnye sootnosheniya, Sbornik statei, Sovr. probl. matem., 9, MIAN, M., 2007, 11–26 | DOI
[3] A. I. Bogolyubskii, “Rekurrentnye sootnosheniya s ratsionalnymi koeffitsientami dlya nekotorykh sovmestno ortogonalnykh polinomov, zadavaemykh formuloi Rodriga”, Ratsionalnye priblizheniya postoyannoi Eilera i rekurrentnye sootnosheniya, Sbornik statei, Sovr. probl. matem., 9, MIAN, M., 2007, 27–35 | DOI
[4] A. I. Aptekarev, D. N. Tulyakov, “Chetyrekhchlennye rekurrentnye sootnosheniya dlya $\gamma$-form”, Ratsionalnye priblizheniya postoyannoi Eilera i rekurrentnye sootnosheniya, Sbornik statei, Sovr. probl. matem., 9, MIAN, M., 2007, 37–43 | DOI
[5] A. I. Aptekarev, V. G. Lysov, “Asimptotika $\gamma$-form, generiruemykh sovmestno ortogonalnymi mnogochlenami”, Ratsionalnye priblizheniya postoyannoi Eilera i rekurrentnye sootnosheniya, Sbornik statei, Sovr. probl. matem., 9, MIAN, M., 2007, 55–62 | DOI
[6] A. I. Aptekarev, A. Branquinho, W. Van Assche, “Multiple orthogonal polynomials for classical weights”, Trans. Amer. Math. Soc., 355:10 (2003), 3887–3914 | DOI | MR | Zbl
[7] B. A. Kalyagin, “Approksimatsii Ermita–Pade i spektralnyi analiz nesimmetrichnykh operatorov”, Matem. sb., 185:6 (1994), 79–100 | MR | Zbl