Maximally Movable Riemannian Spaces with Torsion
Matematičeskie zametki, Tome 85 (2009) no. 5, pp. 754-757.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that, among all Riemannian spaces of constant curvature, only three-dimensional spaces have torsion which is invariant under the group of motions. The torsion tensor in these spaces is covariantly constant and determines the torsion form. The ratio of the integral of this form over a bounded domain to its volume is a constant determining the torsion of the space. We introduce the notions of volume torsion and scalar torsion.
Keywords: Riemannian space, curvature, Levi-Cività connection, metric connection, Killing equations.
Mots-clés : group of motions, torsion tensor
@article{MZM_2009_85_5_a10,
     author = {V. I. Panzhenskij},
     title = {Maximally {Movable} {Riemannian} {Spaces} with {Torsion}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {754--757},
     publisher = {mathdoc},
     volume = {85},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a10/}
}
TY  - JOUR
AU  - V. I. Panzhenskij
TI  - Maximally Movable Riemannian Spaces with Torsion
JO  - Matematičeskie zametki
PY  - 2009
SP  - 754
EP  - 757
VL  - 85
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a10/
LA  - ru
ID  - MZM_2009_85_5_a10
ER  - 
%0 Journal Article
%A V. I. Panzhenskij
%T Maximally Movable Riemannian Spaces with Torsion
%J Matematičeskie zametki
%D 2009
%P 754-757
%V 85
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a10/
%G ru
%F MZM_2009_85_5_a10
V. I. Panzhenskij. Maximally Movable Riemannian Spaces with Torsion. Matematičeskie zametki, Tome 85 (2009) no. 5, pp. 754-757. http://geodesic.mathdoc.fr/item/MZM_2009_85_5_a10/

[1] K. Yano, S. Bokhner, Krivizna i chisla Betti, IL, M., 1957 | MR | Zbl

[2] L. P. Eizenkhart, Nepreryvnye gruppy preobrazovanii, IL, M., 1947 | MR | Zbl

[3] S. Sternberg, Lektsii po differentsialnoi geometrii, Mir, M., 1970 | MR | Zbl