Equivariant Topological Classification of the Fano Varieties of Real Four-Dimensional Cubics
Matematičeskie zametki, Tome 85 (2009) no. 4, pp. 603-615

Voir la notice de l'article provenant de la source Math-Net.Ru

The equivariant topological type of the Fano variety parametrizing the set of lines on a nonsingular real hypersurface of degree three in a five-dimensional projective space is calculated. In the investigation of this Fano variety, results and constructions of the paper by Finashin and Kharlamov on the rigid projective classification of real four-dimensional cubics are used. The construction of Hassett (from the paper devoted to special four-dimensional cubics) is also applied.
Keywords: threefold, Fano variety, equivariant topological type, complex projective space, cubic fourfold, Grassman manifold, equivariant diffeomorphism, K3 surface.
@article{MZM_2009_85_4_a9,
     author = {V. A. Krasnov},
     title = {Equivariant {Topological} {Classification} of the {Fano} {Varieties} of {Real} {Four-Dimensional} {Cubics}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {603--615},
     publisher = {mathdoc},
     volume = {85},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a9/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - Equivariant Topological Classification of the Fano Varieties of Real Four-Dimensional Cubics
JO  - Matematičeskie zametki
PY  - 2009
SP  - 603
EP  - 615
VL  - 85
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a9/
LA  - ru
ID  - MZM_2009_85_4_a9
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T Equivariant Topological Classification of the Fano Varieties of Real Four-Dimensional Cubics
%J Matematičeskie zametki
%D 2009
%P 603-615
%V 85
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a9/
%G ru
%F MZM_2009_85_4_a9
V. A. Krasnov. Equivariant Topological Classification of the Fano Varieties of Real Four-Dimensional Cubics. Matematičeskie zametki, Tome 85 (2009) no. 4, pp. 603-615. http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a9/