Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2009_85_4_a3, author = {P. M. Akhmet'ev and O. V. Kunakovskaya}, title = {Integral {Formula} for a {Generalized} {Sato--Levine} {Invariant} in {Magnetic} {Hydrodynamics}}, journal = {Matemati\v{c}eskie zametki}, pages = {524--537}, publisher = {mathdoc}, volume = {85}, number = {4}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a3/} }
TY - JOUR AU - P. M. Akhmet'ev AU - O. V. Kunakovskaya TI - Integral Formula for a Generalized Sato--Levine Invariant in Magnetic Hydrodynamics JO - Matematičeskie zametki PY - 2009 SP - 524 EP - 537 VL - 85 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a3/ LA - ru ID - MZM_2009_85_4_a3 ER -
P. M. Akhmet'ev; O. V. Kunakovskaya. Integral Formula for a Generalized Sato--Levine Invariant in Magnetic Hydrodynamics. Matematičeskie zametki, Tome 85 (2009) no. 4, pp. 524-537. http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a3/
[1] V. I. Arnold, Zadachi Arnolda, Fazis, M., 2000 | MR | Zbl
[2] P. Akhmetiev, A. Ruzmaikin, “A fourth-order topological invariant of magnetic or vortex lines”, J. Geom. Phys., 15:2 (1995), 95–101 | DOI | MR | Zbl
[3] Ch. Mayer, Topological Link Invariants of Magnetic Fields, Thesis, Bochum, 2003
[4] M. I. Monastyrsky, V. S. Retakh, “Topology of linked defects in condensed matter”, Comm. Math. Phys., 103:3 (1986), 445–459 | DOI | MR | Zbl
[5] M. V. Monastyrsky, P. V. Sasorov, “Topological invariants in magnetic hydrodynamics”, Sov. Phys. JETP, 93 (1987), 1210–1220
[6] M. A. Berger, “Third-order braid invariants”, J. Phys. A, 24:17 (1991), 4027–4036 | DOI | MR | Zbl
[7] N. W. Evans, M. A. Berger, “A hierarchy of linking integrals”, Topological Aspects of Fluids and Plasmas (Santa Barbara, CA, 1991), NATO Adv. Sci. Inst. Ser. E Appl. Sci., 218, Kluwer Acad. Publ., Dordrecht, 1992, 237–248 | MR | Zbl
[8] G. Hornig, Ch. Mayer, “Towards a third-order topological invariant for magnetic fields”, J. Phys. A, 35:17 (2002), 3945–3959 | DOI | MR | Zbl
[9] H. v. Bodecker, G. Hornig, “Link invariants of electromagnetic fields”, Phys. Rev. Lett., 92:3 (2004), Art. No 030406, 4 pp. | DOI | MR
[10] P. M. Akhmetiev, “On a new integral formula for an invariant of 3-component oriented links”, J. Geom. Phys., 53:2 (2005), 180–196 | DOI | MR | Zbl
[11] P. M. Akhmetiev, “On a higher analog of the linking number of two curves”, Topics in Quantum Groups and Finite-Type Invariants, Amer. Math. Soc. Transl. Ser. 2, 185, Amer. Math. Soc., Providence, RI, 1998, 113–127 | MR | Zbl
[12] Y. Nakanishi, “Delta link homotopy for two component links”, Topology Appl., 121:1–2 (2002), 169–182 | DOI | MR | Zbl
[13] P. M. Akhmetev, D. Repovsh, “Obobschenie invarianta Sato–Levina”, Lokalnye i globalnye zadachi teorii osobennostei, Tr. MIAN, 221, Nauka, M., 1998, 69–80 | MR | Zbl
[14] P. M. Akhmetev, O. V. Kunakovskaya, V. A. Kutvitskii, “Zamechanie o dissipatsii integrala magnitnoi spiralnosti”, TMF, 158:1 (2009), 150–160
[15] P. M. Akhmetev, “O vysshem analoge koeffitsienta zatsepleniya pary bezdivergetnykh vektornykh polei”, Geometriya i topologiya. 6, Zap. nauchn. sem. POMI, 279, POMI, SPb., 2001, 15–23 | MR | Zbl
[16] S. A. Melikhov, Colored Finite Type Invariants and a Multi-Variable Analogue of the Conway Polynomial, arXiv: math.GT/0312007
[17] P. M. Akhmetev, I. Maleshich, D. Repovsh, “Ob invariantakh Milnora chetyrekhkomponentnykh zatseplenii”, Matem. zametki, 71:4 (2002), 496–507 | MR | Zbl