Integral Formula for a Generalized Sato--Levine Invariant in Magnetic Hydrodynamics
Matematičeskie zametki, Tome 85 (2009) no. 4, pp. 524-537.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a pair of divergence-free vector fields $\mathbf B$ and $\widetilde{\mathbf B}$ respectively localized in two oriented tubes $U$ and $\widetilde U$ in $\mathbb R^3$, we propose a fourth-order integral $W$ and describe the dependence between the integral $W$ and a higher topological invariant $\beta=\beta(l,\widetilde l)$ (namely, the generalized Sato–Levine invariant). The new integral is a generalization of the well-known integral, which was defined earlier for two tubes with zero linking number.
Keywords: topological invariant, oriented magnetic tube, linking number, magnetic hydrodynamics, Lie derivative, Massey product, gradient field.
Mots-clés : Sato–Levine invariant
@article{MZM_2009_85_4_a3,
     author = {P. M. Akhmet'ev and O. V. Kunakovskaya},
     title = {Integral {Formula} for a {Generalized} {Sato--Levine} {Invariant} in {Magnetic} {Hydrodynamics}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {524--537},
     publisher = {mathdoc},
     volume = {85},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a3/}
}
TY  - JOUR
AU  - P. M. Akhmet'ev
AU  - O. V. Kunakovskaya
TI  - Integral Formula for a Generalized Sato--Levine Invariant in Magnetic Hydrodynamics
JO  - Matematičeskie zametki
PY  - 2009
SP  - 524
EP  - 537
VL  - 85
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a3/
LA  - ru
ID  - MZM_2009_85_4_a3
ER  - 
%0 Journal Article
%A P. M. Akhmet'ev
%A O. V. Kunakovskaya
%T Integral Formula for a Generalized Sato--Levine Invariant in Magnetic Hydrodynamics
%J Matematičeskie zametki
%D 2009
%P 524-537
%V 85
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a3/
%G ru
%F MZM_2009_85_4_a3
P. M. Akhmet'ev; O. V. Kunakovskaya. Integral Formula for a Generalized Sato--Levine Invariant in Magnetic Hydrodynamics. Matematičeskie zametki, Tome 85 (2009) no. 4, pp. 524-537. http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a3/

[1] V. I. Arnold, Zadachi Arnolda, Fazis, M., 2000 | MR | Zbl

[2] P. Akhmetiev, A. Ruzmaikin, “A fourth-order topological invariant of magnetic or vortex lines”, J. Geom. Phys., 15:2 (1995), 95–101 | DOI | MR | Zbl

[3] Ch. Mayer, Topological Link Invariants of Magnetic Fields, Thesis, Bochum, 2003

[4] M. I. Monastyrsky, V. S. Retakh, “Topology of linked defects in condensed matter”, Comm. Math. Phys., 103:3 (1986), 445–459 | DOI | MR | Zbl

[5] M. V. Monastyrsky, P. V. Sasorov, “Topological invariants in magnetic hydrodynamics”, Sov. Phys. JETP, 93 (1987), 1210–1220

[6] M. A. Berger, “Third-order braid invariants”, J. Phys. A, 24:17 (1991), 4027–4036 | DOI | MR | Zbl

[7] N. W. Evans, M. A. Berger, “A hierarchy of linking integrals”, Topological Aspects of Fluids and Plasmas (Santa Barbara, CA, 1991), NATO Adv. Sci. Inst. Ser. E Appl. Sci., 218, Kluwer Acad. Publ., Dordrecht, 1992, 237–248 | MR | Zbl

[8] G. Hornig, Ch. Mayer, “Towards a third-order topological invariant for magnetic fields”, J. Phys. A, 35:17 (2002), 3945–3959 | DOI | MR | Zbl

[9] H. v. Bodecker, G. Hornig, “Link invariants of electromagnetic fields”, Phys. Rev. Lett., 92:3 (2004), Art. No 030406, 4 pp. | DOI | MR

[10] P. M. Akhmetiev, “On a new integral formula for an invariant of 3-component oriented links”, J. Geom. Phys., 53:2 (2005), 180–196 | DOI | MR | Zbl

[11] P. M. Akhmetiev, “On a higher analog of the linking number of two curves”, Topics in Quantum Groups and Finite-Type Invariants, Amer. Math. Soc. Transl. Ser. 2, 185, Amer. Math. Soc., Providence, RI, 1998, 113–127 | MR | Zbl

[12] Y. Nakanishi, “Delta link homotopy for two component links”, Topology Appl., 121:1–2 (2002), 169–182 | DOI | MR | Zbl

[13] P. M. Akhmetev, D. Repovsh, “Obobschenie invarianta Sato–Levina”, Lokalnye i globalnye zadachi teorii osobennostei, Tr. MIAN, 221, Nauka, M., 1998, 69–80 | MR | Zbl

[14] P. M. Akhmetev, O. V. Kunakovskaya, V. A. Kutvitskii, “Zamechanie o dissipatsii integrala magnitnoi spiralnosti”, TMF, 158:1 (2009), 150–160

[15] P. M. Akhmetev, “O vysshem analoge koeffitsienta zatsepleniya pary bezdivergetnykh vektornykh polei”, Geometriya i topologiya. 6, Zap. nauchn. sem. POMI, 279, POMI, SPb., 2001, 15–23 | MR | Zbl

[16] S. A. Melikhov, Colored Finite Type Invariants and a Multi-Variable Analogue of the Conway Polynomial, arXiv: math.GT/0312007

[17] P. M. Akhmetev, I. Maleshich, D. Repovsh, “Ob invariantakh Milnora chetyrekhkomponentnykh zatseplenii”, Matem. zametki, 71:4 (2002), 496–507 | MR | Zbl