Uniform Nonamenability of Subgroups of Free Burnside Groups of Odd Period
Matematičeskie zametki, Tome 85 (2009) no. 4, pp. 516-523.

Voir la notice de l'article provenant de la source Math-Net.Ru

A famous theorem of Adyan states that, for any $m\ge 2$ and any odd $n\ge 665$, the free $m$-generated Burnside group $B(m,n)$ of period $n$ is not amenable. It is proved in the present paper that every noncyclic subgroup of the free Burnside group $B(m,n)$ of odd period $n\ge 1003$ is a uniformly nonamenable group. This result implies the affirmative answer, for odd $n\ge 1003$, to the following de la Harpe question: Is it true that the infinite free Burnside group $B(m,n)$ has uniform exponential growth? It is also proved that every $S$-ball of radius $(400n)^3$ contains two elements which form a basis of a free periodic subgroup of rank 2 in $B(m,n)$, where $S$ is an arbitrary set of elements generating a noncyclic subgroup of $B(m,n)$.
Keywords: free Burnside group, periodic group, uniformly nonamenable groups, uniform exponential growth, hyperbolic group.
Mots-clés : amenable group, Følner constant
@article{MZM_2009_85_4_a2,
     author = {V. S. Atabekyan},
     title = {Uniform {Nonamenability} of {Subgroups} of {Free} {Burnside} {Groups} of {Odd} {Period}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {516--523},
     publisher = {mathdoc},
     volume = {85},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a2/}
}
TY  - JOUR
AU  - V. S. Atabekyan
TI  - Uniform Nonamenability of Subgroups of Free Burnside Groups of Odd Period
JO  - Matematičeskie zametki
PY  - 2009
SP  - 516
EP  - 523
VL  - 85
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a2/
LA  - ru
ID  - MZM_2009_85_4_a2
ER  - 
%0 Journal Article
%A V. S. Atabekyan
%T Uniform Nonamenability of Subgroups of Free Burnside Groups of Odd Period
%J Matematičeskie zametki
%D 2009
%P 516-523
%V 85
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a2/
%G ru
%F MZM_2009_85_4_a2
V. S. Atabekyan. Uniform Nonamenability of Subgroups of Free Burnside Groups of Odd Period. Matematičeskie zametki, Tome 85 (2009) no. 4, pp. 516-523. http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a2/

[1] G. N. Arzhantseva, J. Burillo, M. Lustig, L. Reeves, H. Short, E. Ventura, “Uniform non-amenability”, Adv. Math., 197:2 (2005), 499–522 | DOI | MR | Zbl

[2] E. Følner, “On groups with full Banach mean value”, Math. Scand., 3 (1955), 243–254 | MR | Zbl

[3] I. Namioka, “Følner's condition for amenable semi-groups”, Math. Scand, 15 (1964), 18–28 | MR | Zbl

[4] A. Hulanicki, “Means and Følner condition on locally compact groups”, Studia Math., 27 (1966), 87–104 | MR | Zbl

[5] J. von Neumann, “Zur algemeinen theorie des masses”, Fund. Math., 13 (1929), 73–116 | Zbl

[6] S. I. Adyan, “Aksiomaticheskii metod postroeniya grupp s zadannymi svoistvami”, UMN, 32:1 (1977), 3–15 | MR | Zbl

[7] S. I. Adyan, “Sluchainye bluzhdaniya na svobodnykh periodicheskikh gruppakh”, Izv. AN SSSR. Ser. matem., 46:6 (1982), 1139–1149 | MR | Zbl

[8] I. G. Lysënok, “O nekotorykh algoritmicheskikh svoistvakh giperbolicheskikh grupp”, Izv. AN SSSR. Ser. matem., 53:4 (1989), 814–832 | MR | Zbl

[9] P. de la Harpe, A. Valette, “La propriété (T) de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger)”, Astérisque, 175, Soc. Math. France, Paris, 1989 | MR | Zbl

[10] D. V. Osin, “Weakly amenable groups”, Computational and Statistical Group Theory (Las Vegas, NV/Hoboken, NJ, 2001), Contemp. Math., 298, Amer. Math. Soc., Providence, RI, 2002, 105–113 | MR | Zbl

[11] D. V. Osin, “Uniform non-amenability of free Burnside groups”, Arch. Math. (Basel), 88:5 (2007), 403–412 | DOI | MR | Zbl

[12] S. V. Ivanov, A. Yu. Ol'shanskii, “Some applications of graded diagrams in combinatorial group theory”, Groups, Proc. Int. Conf., V. 2 (St. Andrews, UK 1989), London Math. Soc. Lecture Note Ser., 160, Cambridge Univ. Press, Cambridge, 1991, 258–308 | MR | Zbl

[13] Y. Shalom, “Explicit Kazhdan constants for representations of semisimple and arithmetic groups”, Ann. Inst. Fourier (Grenoble), 50:3 (2000), 833–863 | MR | Zbl

[14] P. de la Harpe, “Uniform growth in groups of exponential growth”, Geom. Dedicata, 95:1 (2002), 1–17 | DOI | MR | Zbl

[15] S. I. Adyan, Problema Bernsaida i tozhdestva v gruppakh, Nauka, M., 1975 | MR | Zbl

[16] V. S. Atabekyan, “O podgruppakh svobodnykh periodicheskikh grupp nechetnogo perioda $n\ge 1003$”, Izv. RAN. Ser. matem. (to appear)

[17] V. S. Atabekyan, “O prostykh i svobodnykh periodicheskikh gruppakh”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1987, no. 6, 76–78 | MR | Zbl

[18] M. Koubi, “Croissance uniforme dans les groupes hyperboliques”, Ann. Inst. Fourier (Grenoble), 48:5 (1998), 1441–1453 | MR | Zbl

[19] S. I. Adyan, “Problema Bernsaida o periodicheskoikh gruppakh i smezhnye voprosy”, Sovremennye problemy matematiki, 1, MIAN, M., 2003, 5–29 | DOI | MR

[20] V. L. Shirvanyan, “Vlozhenie gruppy $\mathbf B(\infty,n)$ v gruppu $\mathbf B(2,n)$”, Izv. AN SSSR. Ser. matem., 40:1 (1976), 190–208 | MR | Zbl

[21] S. I. Adyan, I. G. Lysënok, “O gruppakh, vse sobstvennye podgruppy kotorykh konechnye tsiklicheskie”, Izv. AN SSSR. Ser. matem., 55:5 (1991), 933–990 | MR | Zbl