Uniform Nonamenability of Subgroups of Free Burnside Groups of Odd Period
Matematičeskie zametki, Tome 85 (2009) no. 4, pp. 516-523

Voir la notice de l'article provenant de la source Math-Net.Ru

A famous theorem of Adyan states that, for any $m\ge 2$ and any odd $n\ge 665$, the free $m$-generated Burnside group $B(m,n)$ of period $n$ is not amenable. It is proved in the present paper that every noncyclic subgroup of the free Burnside group $B(m,n)$ of odd period $n\ge 1003$ is a uniformly nonamenable group. This result implies the affirmative answer, for odd $n\ge 1003$, to the following de la Harpe question: Is it true that the infinite free Burnside group $B(m,n)$ has uniform exponential growth? It is also proved that every $S$-ball of radius $(400n)^3$ contains two elements which form a basis of a free periodic subgroup of rank 2 in $B(m,n)$, where $S$ is an arbitrary set of elements generating a noncyclic subgroup of $B(m,n)$.
Keywords: free Burnside group, periodic group, uniformly nonamenable groups, uniform exponential growth, hyperbolic group.
Mots-clés : amenable group, Følner constant
@article{MZM_2009_85_4_a2,
     author = {V. S. Atabekyan},
     title = {Uniform {Nonamenability} of {Subgroups} of {Free} {Burnside} {Groups} of {Odd} {Period}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {516--523},
     publisher = {mathdoc},
     volume = {85},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a2/}
}
TY  - JOUR
AU  - V. S. Atabekyan
TI  - Uniform Nonamenability of Subgroups of Free Burnside Groups of Odd Period
JO  - Matematičeskie zametki
PY  - 2009
SP  - 516
EP  - 523
VL  - 85
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a2/
LA  - ru
ID  - MZM_2009_85_4_a2
ER  - 
%0 Journal Article
%A V. S. Atabekyan
%T Uniform Nonamenability of Subgroups of Free Burnside Groups of Odd Period
%J Matematičeskie zametki
%D 2009
%P 516-523
%V 85
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a2/
%G ru
%F MZM_2009_85_4_a2
V. S. Atabekyan. Uniform Nonamenability of Subgroups of Free Burnside Groups of Odd Period. Matematičeskie zametki, Tome 85 (2009) no. 4, pp. 516-523. http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a2/