Uniform Nonamenability of Subgroups of Free Burnside Groups of Odd Period
Matematičeskie zametki, Tome 85 (2009) no. 4, pp. 516-523
Voir la notice de l'article provenant de la source Math-Net.Ru
A famous theorem of Adyan states that, for any $m\ge 2$ and any odd $n\ge 665$, the free $m$-generated Burnside group $B(m,n)$ of period $n$ is not amenable. It is proved in the present paper that every noncyclic subgroup of the free Burnside group $B(m,n)$ of odd period $n\ge 1003$ is a uniformly nonamenable group. This result implies the affirmative answer, for odd $n\ge 1003$, to the following de la Harpe question: Is it true that the infinite free Burnside group $B(m,n)$ has uniform exponential growth? It is also proved that every $S$-ball of radius $(400n)^3$ contains two elements which form a basis of a free periodic subgroup of rank 2 in $B(m,n)$, where $S$ is an arbitrary set of elements generating a noncyclic subgroup of $B(m,n)$.
Keywords:
free Burnside group, periodic group, uniformly nonamenable groups, uniform exponential growth, hyperbolic group.
Mots-clés : amenable group, Følner constant
Mots-clés : amenable group, Følner constant
@article{MZM_2009_85_4_a2,
author = {V. S. Atabekyan},
title = {Uniform {Nonamenability} of {Subgroups} of {Free} {Burnside} {Groups} of {Odd} {Period}},
journal = {Matemati\v{c}eskie zametki},
pages = {516--523},
publisher = {mathdoc},
volume = {85},
number = {4},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a2/}
}
V. S. Atabekyan. Uniform Nonamenability of Subgroups of Free Burnside Groups of Odd Period. Matematičeskie zametki, Tome 85 (2009) no. 4, pp. 516-523. http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a2/