Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2009_85_4_a11, author = {S. A. Telyakovskii}, title = {Approximation by {Bernstein} {Polynomials} at the {Points} of {Discontinuity} of the {Derivatives}}, journal = {Matemati\v{c}eskie zametki}, pages = {622--629}, publisher = {mathdoc}, volume = {85}, number = {4}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a11/} }
TY - JOUR AU - S. A. Telyakovskii TI - Approximation by Bernstein Polynomials at the Points of Discontinuity of the Derivatives JO - Matematičeskie zametki PY - 2009 SP - 622 EP - 629 VL - 85 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a11/ LA - ru ID - MZM_2009_85_4_a11 ER -
S. A. Telyakovskii. Approximation by Bernstein Polynomials at the Points of Discontinuity of the Derivatives. Matematičeskie zametki, Tome 85 (2009) no. 4, pp. 622-629. http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a11/
[1] G. G. Lorentz, Bernstein Polynomials, Chelsea Publ., New York, 1986 | MR | Zbl
[2] I. Chlodovsky, “Sur la représentation des fonctions discontinues par les polynômes de M. S. Bernstein”, Fund. Math., 13 (1929), 62–72
[3] G. M. Fikhtengolts, Kurs differentsialnogo i integralnogo ischisleniya, T. 2, Fizmatlit, M., 2002 | MR | Zbl
[4] S. A. Telyakovskii, “O priblizhenii differentsiruemykh funktsii mnogochlenami Bernshteina i mnogochlenami Kantorovicha”, Teoriya funktsii i nelineinye uravneniya v chastnykh proizvodnykh, Tr. MIAN, 260, Nauka, M., 2008, 289–296