Approximation by Bernstein Polynomials at the Points of Discontinuity of the Derivatives
Matematičeskie zametki, Tome 85 (2009) no. 4, pp. 622-629.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that, in the asymptotic formulas for the deviations of Bernstein polynomials from functions at the points of discontinuity of the first kind of the highest even-order derivative, the value of such a derivative can be replaced by the half-sum of its limits on the right and on the left.
Keywords: Bernstein polynomial, Peano derivative, point of discontinuity of the first kind, Stirling's formula, modulus of continuity.
@article{MZM_2009_85_4_a11,
     author = {S. A. Telyakovskii},
     title = {Approximation by {Bernstein} {Polynomials} at the {Points} of {Discontinuity} of the {Derivatives}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {622--629},
     publisher = {mathdoc},
     volume = {85},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a11/}
}
TY  - JOUR
AU  - S. A. Telyakovskii
TI  - Approximation by Bernstein Polynomials at the Points of Discontinuity of the Derivatives
JO  - Matematičeskie zametki
PY  - 2009
SP  - 622
EP  - 629
VL  - 85
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a11/
LA  - ru
ID  - MZM_2009_85_4_a11
ER  - 
%0 Journal Article
%A S. A. Telyakovskii
%T Approximation by Bernstein Polynomials at the Points of Discontinuity of the Derivatives
%J Matematičeskie zametki
%D 2009
%P 622-629
%V 85
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a11/
%G ru
%F MZM_2009_85_4_a11
S. A. Telyakovskii. Approximation by Bernstein Polynomials at the Points of Discontinuity of the Derivatives. Matematičeskie zametki, Tome 85 (2009) no. 4, pp. 622-629. http://geodesic.mathdoc.fr/item/MZM_2009_85_4_a11/

[1] G. G. Lorentz, Bernstein Polynomials, Chelsea Publ., New York, 1986 | MR | Zbl

[2] I. Chlodovsky, “Sur la représentation des fonctions discontinues par les polynômes de M. S. Bernstein”, Fund. Math., 13 (1929), 62–72

[3] G. M. Fikhtengolts, Kurs differentsialnogo i integralnogo ischisleniya, T. 2, Fizmatlit, M., 2002 | MR | Zbl

[4] S. A. Telyakovskii, “O priblizhenii differentsiruemykh funktsii mnogochlenami Bernshteina i mnogochlenami Kantorovicha”, Teoriya funktsii i nelineinye uravneniya v chastnykh proizvodnykh, Tr. MIAN, 260, Nauka, M., 2008, 289–296