The Geometry of a Quasilinear System of Two Partial Differential Equations Containing the First and the Second Partial Derivatives of Two Functions in Two Independent Variables
Matematičeskie zametki, Tome 85 (2009) no. 3, pp. 421-432.

Voir la notice de l'article provenant de la source Math-Net.Ru

The geometry of the system of two partial differential equations containing the first and second partial derivatives of two functions in two independent variables is studied by using Élie Cartan's method of invariant forms and the group-theoretic method of extensions and enclosings due to G. F. Laptev (for finite groups) and A. M. Vasilev (for infinite groups). Systems of quasilinear equations with the first and second partial derivatives of two functions $u$ and $v$ in two independent variables $x$ and $y$ are classified.
Keywords: geometry of partial differential equations, quasilinear partial differential system, integral manifold, characteristic.
Mots-clés : point transformation group
@article{MZM_2009_85_3_a9,
     author = {L. N. Orlova},
     title = {The {Geometry} of a {Quasilinear} {System} of {Two} {Partial} {Differential} {Equations} {Containing} the {First} and the {Second} {Partial} {Derivatives} of {Two} {Functions} in {Two} {Independent} {Variables}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {421--432},
     publisher = {mathdoc},
     volume = {85},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a9/}
}
TY  - JOUR
AU  - L. N. Orlova
TI  - The Geometry of a Quasilinear System of Two Partial Differential Equations Containing the First and the Second Partial Derivatives of Two Functions in Two Independent Variables
JO  - Matematičeskie zametki
PY  - 2009
SP  - 421
EP  - 432
VL  - 85
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a9/
LA  - ru
ID  - MZM_2009_85_3_a9
ER  - 
%0 Journal Article
%A L. N. Orlova
%T The Geometry of a Quasilinear System of Two Partial Differential Equations Containing the First and the Second Partial Derivatives of Two Functions in Two Independent Variables
%J Matematičeskie zametki
%D 2009
%P 421-432
%V 85
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a9/
%G ru
%F MZM_2009_85_3_a9
L. N. Orlova. The Geometry of a Quasilinear System of Two Partial Differential Equations Containing the First and the Second Partial Derivatives of Two Functions in Two Independent Variables. Matematičeskie zametki, Tome 85 (2009) no. 3, pp. 421-432. http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a9/

[1] E. Kartan, Teoriya konechnykh nepreryvnykh grupp i differentsialnaya geometriya, izlozhennye metodom podvizhnogo repera, Izd-vo MGU, M., 1963 | Zbl

[2] E. Kartan, Izbrannye trudy, MTsNMO, M., 1998 | MR | Zbl

[3] S. P. Finikov, Metod vneshnikh form Kartana v differentsialnoi geometrii. Teoriya sovmestimosti sistem differentsialnykh uravnenii v polnykh differentsialakh i v chastnykh proizvodnykh, Gostekhizdat, M.–L., 1948 | MR | Zbl

[4] G. F. Laptev, “Differentsialnaya geometriya pogruzhennykh mnogoobrazii. Teoretiko-gruppovoi metod differentsialno-geometricheskikh issledovanii”, Tr. MMO, 2 (1953), 275–382 | MR | Zbl

[5] A. M. Vasilev, “Sistemy trekh differentsialnykh uravnenii s chastnymi proizvodnymi pervogo poryadka pri trekh neizvestnykh funktsiyakh i dvukh nezavisimykh peremennykh (lokalnaya teoriya)”, Matem. sb., 70:4 (1966), 457–480 | MR | Zbl

[6] A. M. Vasilev, Teoriya differentsialno-geometricheskikh struktur, Izd-vo MGU, M., 1987 | MR | Zbl

[7] L. N. Orlova, “Sistema dvukh differentsialnykh uravnenii s chastnymi proizvodnymi pervogo i vtorogo poryadka pri dvukh neizvestnykh funktsiyakh i dvukh nezavisimykh peremennykh”, Voprosy differentsialnoi i neevklidovoi geometrii, Uchenye zapiski, No 271, Mosk. gos. ped. in-t im. V. I. Lenina, M., 1967, 103–112 | MR

[8] V. Blyashke, Vvedenie v geometriyu tkanei, Fizmatgiz, M., 1959 | MR

[9] T. A. Akramov, Differentsialnye uravneniya i ikh prilozheniya v modelirovanii fiziko-khimicheskikh protsessov, Bashirskii gos. un-t., Ufa, 2000

[10] A. Kushner, V. Lychagin, V. Rubtsov, Contact Geometry and Non-Linear Differential Equations, Encyclopedia Math. Appl., 101, Cambridge Univ. Press, Cambridge, 2007 | MR | Zbl