On Independent and Stationary Subsystems of the Walsh System and Periodic Multiplicative Systems
Matematičeskie zametki, Tome 85 (2009) no. 3, pp. 342-350.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that the independence and stationarity properties in the narrow sense are equivalent for subsystems of the Walsh system. We consider several analogs of this result and some distinctions for subsystems of periodic multiplicative systems.
Keywords: Walsh system, periodic multiplicative system, weak multiplicativity, stationarity, boundary subsystem, Rademacher system.
@article{MZM_2009_85_3_a2,
     author = {V. F. Gaposhkin},
     title = {On {Independent} and {Stationary} {Subsystems} of the {Walsh} {System} and {Periodic} {Multiplicative} {Systems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {342--350},
     publisher = {mathdoc},
     volume = {85},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a2/}
}
TY  - JOUR
AU  - V. F. Gaposhkin
TI  - On Independent and Stationary Subsystems of the Walsh System and Periodic Multiplicative Systems
JO  - Matematičeskie zametki
PY  - 2009
SP  - 342
EP  - 350
VL  - 85
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a2/
LA  - ru
ID  - MZM_2009_85_3_a2
ER  - 
%0 Journal Article
%A V. F. Gaposhkin
%T On Independent and Stationary Subsystems of the Walsh System and Periodic Multiplicative Systems
%J Matematičeskie zametki
%D 2009
%P 342-350
%V 85
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a2/
%G ru
%F MZM_2009_85_3_a2
V. F. Gaposhkin. On Independent and Stationary Subsystems of the Walsh System and Periodic Multiplicative Systems. Matematičeskie zametki, Tome 85 (2009) no. 3, pp. 342-350. http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a2/

[1] J. B. Robertson, J. M. Womack, “A pairwise independent stationary stochastic process”, Statist. Probab. Lett., 3:4 (1985), 195–199 | DOI | MR | Zbl

[2] R. E. A. C. Paley, “A remarkable series of orthogonal functions. I”, Proc. London Math. Soc. (2), 34:1 (1932), 241–264 | DOI | Zbl

[3] N. Ya. Vilenkin, “K teorii lakunarnykh ortogonalnykh sistem”, Izv. AN SSSR. Ser. matem., 13:3 (1949), 245–252 | MR | Zbl

[4] G. W. Morgenthaler, “On Walsh–Fourier series”, Trans. Amer. Math. Soc., 84:2 (1957), 472–507 | DOI | MR | Zbl

[5] V. F. Gaposhkin, “Lakunarnye ryady i nezavisimye funktsii”, UMN, 21:6 (1966), 3–82 | MR | Zbl

[6] M. Loev, Teoriya veroyatnostei, IL, M., 1962 | MR | Zbl

[7] C. Kachmazh, G. Shteingauz, Teoriya ortogonalnykh ryadov, Fizmatgiz, M., 1958 | MR | Zbl