Exact Constants in the Inequalities for Intermediate Derivatives in $n$-Dimensional Space
Matematičeskie zametki, Tome 85 (2009) no. 3, pp. 476-479
Cet article a éte moissonné depuis la source Math-Net.Ru
Keywords:
Kolmogorov-type inequalities, Sobolev space, intermediate derivative, Hilbert space, Riesz theorem, embedding theorem, Dirac delta function.
@article{MZM_2009_85_3_a15,
author = {A. A. Lunev},
title = {Exact {Constants} in the {Inequalities} for {Intermediate} {Derivatives} in $n${-Dimensional} {Space}},
journal = {Matemati\v{c}eskie zametki},
pages = {476--479},
year = {2009},
volume = {85},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a15/}
}
A. A. Lunev. Exact Constants in the Inequalities for Intermediate Derivatives in $n$-Dimensional Space. Matematičeskie zametki, Tome 85 (2009) no. 3, pp. 476-479. http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a15/
[1] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR | Zbl
[2] V. F. Babenko, N. P. Korneichuk, V. A. Kofanov, S. A. Pichugov, Neravenstva dlya proizvodnykh i ikh prilozheniya, Naukova dumka, Kiev, 2003
[3] V. M. Tikhomirov, Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976 | MR
[4] L. V. Taikov, Matem. zametki, 4:2 (1968), 233–238 | MR | Zbl
[5] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR | Zbl
[6] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1963 | MR | Zbl