Keywords: Hermitian nonnegative-definite solution, Hermitian matrix, Moore–Penrose inverse.
@article{MZM_2009_85_3_a14,
author = {X.-Q. Liu and J.-Y. Rong},
title = {On {Hermitian} {Nonnegative-Definite} {Solutions} to {Matrix} {Equations}},
journal = {Matemati\v{c}eskie zametki},
pages = {470--475},
year = {2009},
volume = {85},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a14/}
}
X.-Q. Liu; J.-Y. Rong. On Hermitian Nonnegative-Definite Solutions to Matrix Equations. Matematičeskie zametki, Tome 85 (2009) no. 3, pp. 470-475. http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a14/
[1] X. Zhang, “The general common Hermitian nonnegative-definite solution to the matrix equations $\mathbf A\mathbf X\mathbf A^*=\mathbf B\mathbf B^*$ and $\mathbf C\mathbf X\mathbf C^*=\mathbf D\mathbf D^*$ with applications in statistics”, J. Multivariate Anal., 93:2 (2005), 257–266 | DOI | MR | Zbl
[2] D. M. Young, J. W. Seaman jr., L. M. Meaux, “Independence distribution preserving covariance structures for the multivariate linear model”, J. Multivariate Anal., 68:2 (1999), 165–175 | DOI | MR | Zbl
[3] D. Hua, P. Lancaster, “Linear matrix equations from an inverse problem of vibration theory”, Linear Algebra Appl., 246 (1996), 31–47 | DOI | MR | Zbl
[4] J. Groß, “A note on the general Hermitian solution to $\mathbf A\mathbf X\mathbf A^*=\mathbf B$”, Bull. Malaysian Math. Soc. (2), 21:2 (1998), 57–62 | MR | Zbl
[5] J. Groß, “Nonnegative-definite and positive-definite solutions to the matrix equation $\mathbf A\mathbf X\mathbf A^*=\mathbf B$ – revisited”, Linear Algebra Appl., 321:1–3 (2000), 123–129 | DOI | MR | Zbl
[6] J. Groß, “A note on the concepts of linear and quadratic sufficiency”, J. Statist. Plann. Inference, 70:1 (1998), 69–76 | DOI | MR | Zbl