On Hermitian Nonnegative-Definite Solutions to Matrix Equations
Matematičeskie zametki, Tome 85 (2009) no. 3, pp. 470-475.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a system of $q$ matrix equations denoted by $$ \mathbf A_i\mathbf X\mathbf A_i^*=\mathbf B_i\mathbf B_i^*,\qquad i=1,2,\dots,q, $$ the problem of the existence of Hermitian nonnegative-definite solutions is considered in this note. We offer an alternative with simplification and regularity to the result on necessary and sufficient conditions for the above matrix equations with $q=2$ to have a Hermitian nonnegative-definite solution obtained by Zhang [1], who provided a revision of Young et al. [2]. Moreover, we give a necessary condition for the general case and then pose a conjecture, for which at least some special situations are argued.
Mots-clés : matrix equation
Keywords: Hermitian nonnegative-definite solution, Hermitian matrix, Moore–Penrose inverse.
@article{MZM_2009_85_3_a14,
     author = {X.-Q. Liu and J.-Y. Rong},
     title = {On {Hermitian} {Nonnegative-Definite} {Solutions} to {Matrix} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {470--475},
     publisher = {mathdoc},
     volume = {85},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a14/}
}
TY  - JOUR
AU  - X.-Q. Liu
AU  - J.-Y. Rong
TI  - On Hermitian Nonnegative-Definite Solutions to Matrix Equations
JO  - Matematičeskie zametki
PY  - 2009
SP  - 470
EP  - 475
VL  - 85
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a14/
LA  - ru
ID  - MZM_2009_85_3_a14
ER  - 
%0 Journal Article
%A X.-Q. Liu
%A J.-Y. Rong
%T On Hermitian Nonnegative-Definite Solutions to Matrix Equations
%J Matematičeskie zametki
%D 2009
%P 470-475
%V 85
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a14/
%G ru
%F MZM_2009_85_3_a14
X.-Q. Liu; J.-Y. Rong. On Hermitian Nonnegative-Definite Solutions to Matrix Equations. Matematičeskie zametki, Tome 85 (2009) no. 3, pp. 470-475. http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a14/

[1] X. Zhang, “The general common Hermitian nonnegative-definite solution to the matrix equations $\mathbf A\mathbf X\mathbf A^*=\mathbf B\mathbf B^*$ and $\mathbf C\mathbf X\mathbf C^*=\mathbf D\mathbf D^*$ with applications in statistics”, J. Multivariate Anal., 93:2 (2005), 257–266 | DOI | MR | Zbl

[2] D. M. Young, J. W. Seaman jr., L. M. Meaux, “Independence distribution preserving covariance structures for the multivariate linear model”, J. Multivariate Anal., 68:2 (1999), 165–175 | DOI | MR | Zbl

[3] D. Hua, P. Lancaster, “Linear matrix equations from an inverse problem of vibration theory”, Linear Algebra Appl., 246 (1996), 31–47 | DOI | MR | Zbl

[4] J. Groß, “A note on the general Hermitian solution to $\mathbf A\mathbf X\mathbf A^*=\mathbf B$”, Bull. Malaysian Math. Soc. (2), 21:2 (1998), 57–62 | MR | Zbl

[5] J. Groß, “Nonnegative-definite and positive-definite solutions to the matrix equation $\mathbf A\mathbf X\mathbf A^*=\mathbf B$ – revisited”, Linear Algebra Appl., 321:1–3 (2000), 123–129 | DOI | MR | Zbl

[6] J. Groß, “A note on the concepts of linear and quadratic sufficiency”, J. Statist. Plann. Inference, 70:1 (1998), 69–76 | DOI | MR | Zbl