On the Well-Posedness of the Prediction-Control Problem for Certain Systems of Equations
Matematičeskie zametki, Tome 85 (2009) no. 3, pp. 440-450.

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider the inverse problem for equations of Sobolev type and their applications to linearized Navier–Stokes systems and phase-field systems. We obtain conditions for the well-defined solvability of these systems.
Keywords: prediction-control problem, Navier–Stokes system of equations, Banach space, strongly $(L,p)$-sectorial operator, analytic semigroup, seepage of liquids.
@article{MZM_2009_85_3_a11,
     author = {A. V. Urazaeva and V. E. Fedorov},
     title = {On the {Well-Posedness} of the {Prediction-Control} {Problem} for {Certain} {Systems} of {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {440--450},
     publisher = {mathdoc},
     volume = {85},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a11/}
}
TY  - JOUR
AU  - A. V. Urazaeva
AU  - V. E. Fedorov
TI  - On the Well-Posedness of the Prediction-Control Problem for Certain Systems of Equations
JO  - Matematičeskie zametki
PY  - 2009
SP  - 440
EP  - 450
VL  - 85
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a11/
LA  - ru
ID  - MZM_2009_85_3_a11
ER  - 
%0 Journal Article
%A A. V. Urazaeva
%A V. E. Fedorov
%T On the Well-Posedness of the Prediction-Control Problem for Certain Systems of Equations
%J Matematičeskie zametki
%D 2009
%P 440-450
%V 85
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a11/
%G ru
%F MZM_2009_85_3_a11
A. V. Urazaeva; V. E. Fedorov. On the Well-Posedness of the Prediction-Control Problem for Certain Systems of Equations. Matematičeskie zametki, Tome 85 (2009) no. 3, pp. 440-450. http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a11/

[1] A. N.Tikhonov, V. Ya. Arsenin, Metody resheniya nekorrektnykh zadach, Nauka, M., 1979 | MR | Zbl

[2] M. M. Lavrentev, V. G. Romanov, S. P. Shishatskii, Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980 | MR | Zbl

[3] A. I. Prilepko, “Metod polugrupp resheniya obratnykh, nelokalnykh i neklassicheskikh zadach. Prognoz-upravlenie i prognoz-nablyudenie evolyutsionnykh uravnenii. I”, Differents. uravneniya, 41:11 (2005), 1560–1571 | MR | Zbl

[4] A. I. Kozhanov, Composite Type Equations and Inverse Problems, Inverse Ill-Posed Probl. Ser., VSP, Utrecht, 1999 | MR | Zbl

[5] N. L. Abasheeva, “Some inverse problems for parabolic equations with changing time direction”, J. Inverse Ill-Posed Probl., 12:4 (2004), 337–348 | DOI | MR | Zbl

[6] V. E. Fedorov, A. V. Urazaeva, “An inverse problem for linear Sobolev type equations”, J. Inverse Ill-Posed Probl., 12:4 (2004), 387–395 | DOI | MR | Zbl

[7] G. A. Sviridyuk, “K obschei teorii polugrupp operatorov”, UMN, 49:4 (1994), 47–74 | MR | Zbl

[8] G. A. Sviridyuk, V. E. Fedorov, “O edinitsakh analiticheskikh polugrupp operatorov s yadrami”, Sib. matem. zhurn., 39:3 (1998), 604–616 | MR | Zbl

[9] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, Inverse Ill-Posed Probl. Ser., VSP, Utrecht, 2003 | MR | Zbl

[10] V. E. Fedorov, “Golomorfnye razreshayuschie polugruppy uravnenii sobolevskogo tipa v lokalno vypuklykh prostranstvakh”, Matem. sb., 195:8 (2004), 131–160 | MR | Zbl

[11] V. E. Fedorov, A. V. Urazaeva, “Obratnaya zadacha dlya odnogo klassa singulyarnykh lineinykh operatorno-differentsialnykh uravnenii”, Tr. Voronezhskoi zimnei matem. shkoly, VGU, Voronezh, 2004, 161–172

[12] G. I. Barenblatt, Yu. P. Zheltov, I. N. Kochina, “Ob osnovnykh predstavleniyakh teorii filtratsii odnorodnykh zhidkostei v treschinovatykh porodakh”, PMM, 24:5 (1960), 852–864 | Zbl

[13] E. S. Dzektser, “Obobschenie uravneniya dvizheniya gruntovykh vod so svobodnoi poverkhnostyu”, Dokl. AN SSSR, 202:5 (1972), 1031–1033 | Zbl

[14] V. E. Fedorov, A. V. Urazaeva, “Obratnye zadachi dlya nekotorykh neklassicheskikh uravnenii matematicheskoi fiziki”, Informatsionnye tekhnologii i obratnye zadachi ratsionalnogo prirodopolzovaniya, Materialy konferentsii, ch. 1: Konstruktivnye metody v teorii obratnykh zadach, YuNIIIT, Khanty-Mansiisk, 2005, 71–73; http://www.uriit.ru/conf_erohin_50/Part_01_16.pdf

[15] A. I. Prilepko, I. A. Vasin, “Nekotorye obratnye nachalno-kraevye zadachi dlya nestatsionarnykh linearizovannykh uravnenii Nave–Stoksa”, Differents. uravneniya, 25:1 (1989), 106–117 | MR | Zbl

[16] A. I. Prilepko, I. A. Vasin, “Nekotorye nestatsionarnye zadachi gidrodinamiki s finalnym pereopredeleniem”, Dokl. AN SSSR, 314:5 (1990), 1075–1078 | MR | Zbl

[17] P. I. Plotnikov, V. N. Starovoitov, “Zadacha Stefana s poverkhnostnym natyazheniem kak predel modeli fazovogo polya”, Differents. uravneniya, 29:3 (1993), 461–471 | MR | Zbl

[18] S. L. Sobolev, “Ob odnoi novoi zadache matematicheskoi fiziki”, Izv. AN SSSR. Ser. matem., 18:1 (1954), 3–50 | MR | Zbl

[19] G. A. Sviridyuk, G. A. Kuznetsov, “Ob otnositelno silnoi $p$-sektorialnosti lineinykh operatorov”, Dokl. RAN, 365:6 (1999), 736–738 | MR | Zbl