On the Error of Multidimensional Quadrature Formulas for Certain Classes of Functions
Matematičeskie zametki, Tome 85 (2009) no. 3, pp. 433-439 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain regular (with respect to the power scale) estimates of the errors of multidimensional optimal quadrature formulas in spaces of periodic functions with constraints on Fourier coefficients in the $\ell_p$-norm for $1.
Mots-clés : optimal quadrature formula, Fourier coefficient, Hölder's inequality.
Keywords: space of periodic functions, Korobov grid, Frolov grid
@article{MZM_2009_85_3_a10,
     author = {M. A. Romanov},
     title = {On the {Error} of {Multidimensional} {Quadrature} {Formulas} for {Certain} {Classes} of {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {433--439},
     year = {2009},
     volume = {85},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a10/}
}
TY  - JOUR
AU  - M. A. Romanov
TI  - On the Error of Multidimensional Quadrature Formulas for Certain Classes of Functions
JO  - Matematičeskie zametki
PY  - 2009
SP  - 433
EP  - 439
VL  - 85
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a10/
LA  - ru
ID  - MZM_2009_85_3_a10
ER  - 
%0 Journal Article
%A M. A. Romanov
%T On the Error of Multidimensional Quadrature Formulas for Certain Classes of Functions
%J Matematičeskie zametki
%D 2009
%P 433-439
%V 85
%N 3
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a10/
%G ru
%F MZM_2009_85_3_a10
M. A. Romanov. On the Error of Multidimensional Quadrature Formulas for Certain Classes of Functions. Matematičeskie zametki, Tome 85 (2009) no. 3, pp. 433-439. http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a10/

[1] K. K. Frolov, Kvadraturnye formuly na klassakh funktsii, Dis. $\dots$ kand. fiz.-matem. nauk, VTs AN SSSR, M., 1979

[2] M. M. Skriganov, “Constructions of uniform distributions in terms of geometry of numbers”, Algebra i analiz, 6:3 (1994), 200–230 | MR | Zbl

[3] V. A. Bykovskii, Otsenki otklonenii optimalnykh setok v $L_p$-norme i teoriya kvadraturnykh formul, IPM DVO RAN, Vladivostok–Khabarovsk, 1995

[4] V. N. Temlyakov, “Ob odnom prieme polucheniya otsenok snizu pogreshnostei kvadraturnykh formul”, Matem. sb., 181:10 (1990), 1403–1413 | MR | Zbl

[5] N. M. Korobov, “O priblizhennom vychislenii kratnykh integralov s pomoschyu metodov teorii chisel”, Dokl. AN SSSR, 115:6 (1957), 1062–1065 | MR | Zbl

[6] N. S. Bakhvalov, “O priblizhennom vychislenii kratnykh integralov”, Vestn. Mosk. un-ta. Ser. Matem., mekh., astron., fiz., khim., 1959, no. 4, 3–18 | MR

[7] I. F. Sharygin, “Otsenki snizu pogreshnosti kvadraturnykh formul na klassakh funktsii”, ZhVM i MF, 3 (1963), 370–376 | MR | Zbl

[8] V. F. Lev, O kvadraturnykh formulakh dlya klassov s ogranicheniyami na koeffitsienty Fure, dep. v VINITI 6294–V87

[9] V. A. Bykovskii, O pravilnom poryadke pogreshnosti optimalnykh kubaturnykh formul v prostranstvakh s dominiruyuschei proizvodnoi i kvadratichnykh otkloneniyakh setok, DVNTs AN SSSR, Vladivostok, 1985

[10] V. A. Bykovskii, M. A. Romanov, “Kvadraturnyi fazovyi perekhod”, Dokl. RAN, 416:6 (2007), 727–731 | MR | Zbl

[11] S. A. Smolyak, “Kvadraturnye i interpolyatsionnye formuly na tenzornykh proizvedeniyakh nekotorykh klassov funktsii”, Dokl. AN SSSR, 148:5 (1963), 1042–1045 | MR | Zbl

[12] V. A. Bykovskii, Teoretiko-chislovye reshetki v evklidovykh prostranstvakh i ikh prilozheniya, Dis. $\dots$ dokt. fiz.-matem. nauk, KhO IPM DVO RAN, Khabarovsk, 1989