Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2009_85_3_a1, author = {O. E. Galkin}, title = {Sequences of {Composition} {Operators} in {Spaces} of {Functions} of {Bounded} $\Phi${-Variation}}, journal = {Matemati\v{c}eskie zametki}, pages = {330--341}, publisher = {mathdoc}, volume = {85}, number = {3}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a1/} }
O. E. Galkin. Sequences of Composition Operators in Spaces of Functions of Bounded $\Phi$-Variation. Matematičeskie zametki, Tome 85 (2009) no. 3, pp. 330-341. http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a1/
[1] J. Musielak, W. Orlicz, “On generalized variations. I”, Studia Math., 18 (1959), 11–41 | MR | Zbl
[2] R. Lésniewicz, W. Orlicz, “On generalized variations. II”, Studia Math., 45 (1973), 71–109 | MR | Zbl
[3] M. Josephy, “Composing functions of bounded variation”, Proc. Amer. Math. Soc., 83:2 (1981), 354–356 | DOI | MR | Zbl
[4] C. Jordan, “Sur la série de Fourier”, C. R. Acad. Sci. Paris, 92:5 (1881), 228–230 | Zbl
[5] N. Wiener, “The quadratic variation of a function and its Fourier coefficients”, Massachusetts J. Math., 3 (1924), 72–94 | Zbl
[6] J. Marcinkiewicz, “On a class of functions and their Fourier series”, Collected Papers, Państwowe Wydawnictwo Naukowe, Warsawa, 1964, 36–41 | MR | Zbl
[7] L. C. Young, “Inequalities connected with bounded $p$-th power variation in the Wiener sense and with integrated Lipschitz conditions”, Proc. London Math. Soc. (2), 43 (1937), 449–467 | DOI | Zbl
[8] L. C. Young, “Sur une généralisation de la notion de variation de puissance $p$-ième bornée au sens de N. Wiener, et sur la convergence des séries de Fourier”, C. R. Acad. Sci. Paris, 204:7 (1937), 470–472 | Zbl
[9] V. V. Chistyakov, O. E. Galkin, “Mappings of bounded $\Phi$-variation with arbitrary function $\Phi$”, J. Dynam. Control Systems, 4:2 (1998), 217–247 | DOI | MR | Zbl
[10] J. Ciemnoczołowski, W. Orlicz, “Composing functions of bounded $\varphi$-variation”, Proc. Amer. Math. Soc., 96:3 (1986), 431–436 | DOI | MR | Zbl