Best Linear Approximation Methods for Functions of Taikov Classes in the Hardy spaces $H_{q,\rho}$, $q\ge1$, $0\rho\le1$
Matematičeskie zametki, Tome 85 (2009) no. 3, pp. 323-329.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the Hardy spaces $H_{q,\rho}$, $q\ge1$, $0\rho\le1$, we construct best linear approximation methods for classes of analytic functions $W^rH_q\Phi$, $r\in\mathbb N$, in the unit disk (studied by L. V. Taikov) whose averaged second-order moduli of continuity of the angular boundary values of the $r$th derivatives are majorized by a given function $\Phi$ satisfying certain constraints.
Keywords: linear approximation of functions, analytic function, Hardy spaces $H_{q,\rho}$, modulus of continuity, $n$-width (Bernstein, Kolmogorov, Gelfand), Minkowski's inequality.
Mots-clés : algebraic polynomial
@article{MZM_2009_85_3_a0,
     author = {S. B. Vakarchuk and V. I. Zabutnaya},
     title = {Best {Linear} {Approximation} {Methods} for {Functions} of {Taikov} {Classes} in the {Hardy} spaces $H_{q,\rho}$, $q\ge1$, $0<\rho\le1$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--329},
     publisher = {mathdoc},
     volume = {85},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a0/}
}
TY  - JOUR
AU  - S. B. Vakarchuk
AU  - V. I. Zabutnaya
TI  - Best Linear Approximation Methods for Functions of Taikov Classes in the Hardy spaces $H_{q,\rho}$, $q\ge1$, $0<\rho\le1$
JO  - Matematičeskie zametki
PY  - 2009
SP  - 323
EP  - 329
VL  - 85
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a0/
LA  - ru
ID  - MZM_2009_85_3_a0
ER  - 
%0 Journal Article
%A S. B. Vakarchuk
%A V. I. Zabutnaya
%T Best Linear Approximation Methods for Functions of Taikov Classes in the Hardy spaces $H_{q,\rho}$, $q\ge1$, $0<\rho\le1$
%J Matematičeskie zametki
%D 2009
%P 323-329
%V 85
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a0/
%G ru
%F MZM_2009_85_3_a0
S. B. Vakarchuk; V. I. Zabutnaya. Best Linear Approximation Methods for Functions of Taikov Classes in the Hardy spaces $H_{q,\rho}$, $q\ge1$, $0<\rho\le1$. Matematičeskie zametki, Tome 85 (2009) no. 3, pp. 323-329. http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a0/

[1] L. V. Taikov, “Poperechniki nekotorykh klassov analiticheskikh funktsii”, Matem. zametki, 22:2 (1977), 285–295 | MR | Zbl

[2] A. Zigmund, Trigonometricheskie ryady. T. 1, Mir, M., 1965 | MR | Zbl

[3] L. V. Taikov, “O nailuchshikh lineinykh metodakh priblizheniya funktsii klassov $B^r$ i $H^r$”, UMN, 18:4 (1963), 183–189 | MR | Zbl

[4] S. B. Vakarchuk, “Nailuchshie lineinye metody priblizheniya i poperechniki klassov analiticheskikh v kruge funktsii”, Matem. zametki, 57:1 (1995), 30–39 | MR | Zbl

[5] N. Ainulloev, L. V. Taikov, “Nailuchshee priblizhenie v smysle A. N. Kolmogorova klassov analiticheskikh v edinichnom kruge funktsii”, Matem. zametki, 40:3 (1986), 341–351 | MR | Zbl

[6] L. V. Taikov, “O nailuchshem priblizhenii v srednem nekotorykh klassov analiticheskikh funktsii”, Matem. zametki, 1:2 (1967), 155–162 | MR | Zbl

[7] V. M. Tikhomirov, “Teoriya priblizhenii”, Analiz – 2, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 14, VINITI, M., 1987, 103–260 | MR | Zbl

[8] A. Pinkus, $n$-Widths in Approximation Theory, Ergeb. Math. Grenzgeb. (3), 7, Springer-Verlag, Berlin, 1985 | MR | Zbl