Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2009_85_3_a0, author = {S. B. Vakarchuk and V. I. Zabutnaya}, title = {Best {Linear} {Approximation} {Methods} for {Functions} of {Taikov} {Classes} in the {Hardy} spaces $H_{q,\rho}$, $q\ge1$, $0<\rho\le1$}, journal = {Matemati\v{c}eskie zametki}, pages = {323--329}, publisher = {mathdoc}, volume = {85}, number = {3}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a0/} }
TY - JOUR AU - S. B. Vakarchuk AU - V. I. Zabutnaya TI - Best Linear Approximation Methods for Functions of Taikov Classes in the Hardy spaces $H_{q,\rho}$, $q\ge1$, $0<\rho\le1$ JO - Matematičeskie zametki PY - 2009 SP - 323 EP - 329 VL - 85 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a0/ LA - ru ID - MZM_2009_85_3_a0 ER -
%0 Journal Article %A S. B. Vakarchuk %A V. I. Zabutnaya %T Best Linear Approximation Methods for Functions of Taikov Classes in the Hardy spaces $H_{q,\rho}$, $q\ge1$, $0<\rho\le1$ %J Matematičeskie zametki %D 2009 %P 323-329 %V 85 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a0/ %G ru %F MZM_2009_85_3_a0
S. B. Vakarchuk; V. I. Zabutnaya. Best Linear Approximation Methods for Functions of Taikov Classes in the Hardy spaces $H_{q,\rho}$, $q\ge1$, $0<\rho\le1$. Matematičeskie zametki, Tome 85 (2009) no. 3, pp. 323-329. http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a0/
[1] L. V. Taikov, “Poperechniki nekotorykh klassov analiticheskikh funktsii”, Matem. zametki, 22:2 (1977), 285–295 | MR | Zbl
[2] A. Zigmund, Trigonometricheskie ryady. T. 1, Mir, M., 1965 | MR | Zbl
[3] L. V. Taikov, “O nailuchshikh lineinykh metodakh priblizheniya funktsii klassov $B^r$ i $H^r$”, UMN, 18:4 (1963), 183–189 | MR | Zbl
[4] S. B. Vakarchuk, “Nailuchshie lineinye metody priblizheniya i poperechniki klassov analiticheskikh v kruge funktsii”, Matem. zametki, 57:1 (1995), 30–39 | MR | Zbl
[5] N. Ainulloev, L. V. Taikov, “Nailuchshee priblizhenie v smysle A. N. Kolmogorova klassov analiticheskikh v edinichnom kruge funktsii”, Matem. zametki, 40:3 (1986), 341–351 | MR | Zbl
[6] L. V. Taikov, “O nailuchshem priblizhenii v srednem nekotorykh klassov analiticheskikh funktsii”, Matem. zametki, 1:2 (1967), 155–162 | MR | Zbl
[7] V. M. Tikhomirov, “Teoriya priblizhenii”, Analiz – 2, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 14, VINITI, M., 1987, 103–260 | MR | Zbl
[8] A. Pinkus, $n$-Widths in Approximation Theory, Ergeb. Math. Grenzgeb. (3), 7, Springer-Verlag, Berlin, 1985 | MR | Zbl