Mots-clés : algebraic polynomial
@article{MZM_2009_85_3_a0,
author = {S. B. Vakarchuk and V. I. Zabutnaya},
title = {Best {Linear} {Approximation} {Methods} for {Functions} of {Taikov} {Classes} in the {Hardy} spaces $H_{q,\rho}$, $q\ge1$, $0<\rho\le1$},
journal = {Matemati\v{c}eskie zametki},
pages = {323--329},
year = {2009},
volume = {85},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a0/}
}
TY - JOUR
AU - S. B. Vakarchuk
AU - V. I. Zabutnaya
TI - Best Linear Approximation Methods for Functions of Taikov Classes in the Hardy spaces $H_{q,\rho}$, $q\ge1$, $0<\rho\le1$
JO - Matematičeskie zametki
PY - 2009
SP - 323
EP - 329
VL - 85
IS - 3
UR - http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a0/
LA - ru
ID - MZM_2009_85_3_a0
ER -
%0 Journal Article
%A S. B. Vakarchuk
%A V. I. Zabutnaya
%T Best Linear Approximation Methods for Functions of Taikov Classes in the Hardy spaces $H_{q,\rho}$, $q\ge1$, $0<\rho\le1$
%J Matematičeskie zametki
%D 2009
%P 323-329
%V 85
%N 3
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a0/
%G ru
%F MZM_2009_85_3_a0
S. B. Vakarchuk; V. I. Zabutnaya. Best Linear Approximation Methods for Functions of Taikov Classes in the Hardy spaces $H_{q,\rho}$, $q\ge1$, $0<\rho\le1$. Matematičeskie zametki, Tome 85 (2009) no. 3, pp. 323-329. http://geodesic.mathdoc.fr/item/MZM_2009_85_3_a0/
[1] L. V. Taikov, “Poperechniki nekotorykh klassov analiticheskikh funktsii”, Matem. zametki, 22:2 (1977), 285–295 | MR | Zbl
[2] A. Zigmund, Trigonometricheskie ryady. T. 1, Mir, M., 1965 | MR | Zbl
[3] L. V. Taikov, “O nailuchshikh lineinykh metodakh priblizheniya funktsii klassov $B^r$ i $H^r$”, UMN, 18:4 (1963), 183–189 | MR | Zbl
[4] S. B. Vakarchuk, “Nailuchshie lineinye metody priblizheniya i poperechniki klassov analiticheskikh v kruge funktsii”, Matem. zametki, 57:1 (1995), 30–39 | MR | Zbl
[5] N. Ainulloev, L. V. Taikov, “Nailuchshee priblizhenie v smysle A. N. Kolmogorova klassov analiticheskikh v edinichnom kruge funktsii”, Matem. zametki, 40:3 (1986), 341–351 | MR | Zbl
[6] L. V. Taikov, “O nailuchshem priblizhenii v srednem nekotorykh klassov analiticheskikh funktsii”, Matem. zametki, 1:2 (1967), 155–162 | MR | Zbl
[7] V. M. Tikhomirov, “Teoriya priblizhenii”, Analiz – 2, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 14, VINITI, M., 1987, 103–260 | MR | Zbl
[8] A. Pinkus, $n$-Widths in Approximation Theory, Ergeb. Math. Grenzgeb. (3), 7, Springer-Verlag, Berlin, 1985 | MR | Zbl