On the Absence of Positive Solutions of Elliptic Equations in Plane Unbounded Domains
Matematičeskie zametki, Tome 85 (2009) no. 2, pp. 261-272.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using model equations of the form $\Delta u+u^\sigma=0$ as an example, in both linear ($\sigma=1$) and nonlinear ($\sigma>1$) cases, we show some direct methods of proof of the absence of positive solutions in semi-infinite plane domains. We consider semi-infinite strips, both straight and exponentially decreasing, with homogeneous Neumann condition on the upper and lower boundaries.
Mots-clés : elliptic equation, Neumann condition.
Keywords: model equation, semi-infinite strip
@article{MZM_2009_85_2_a8,
     author = {S. I. Pokhozhaev},
     title = {On the {Absence} of {Positive} {Solutions} of {Elliptic} {Equations} in {Plane} {Unbounded} {Domains}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {261--272},
     publisher = {mathdoc},
     volume = {85},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_2_a8/}
}
TY  - JOUR
AU  - S. I. Pokhozhaev
TI  - On the Absence of Positive Solutions of Elliptic Equations in Plane Unbounded Domains
JO  - Matematičeskie zametki
PY  - 2009
SP  - 261
EP  - 272
VL  - 85
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_2_a8/
LA  - ru
ID  - MZM_2009_85_2_a8
ER  - 
%0 Journal Article
%A S. I. Pokhozhaev
%T On the Absence of Positive Solutions of Elliptic Equations in Plane Unbounded Domains
%J Matematičeskie zametki
%D 2009
%P 261-272
%V 85
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_2_a8/
%G ru
%F MZM_2009_85_2_a8
S. I. Pokhozhaev. On the Absence of Positive Solutions of Elliptic Equations in Plane Unbounded Domains. Matematičeskie zametki, Tome 85 (2009) no. 2, pp. 261-272. http://geodesic.mathdoc.fr/item/MZM_2009_85_2_a8/

[1] V. A. Kondrat'ev, “On the existence of positive solutions of second-order semilinear elliptic equations in cylindrical domains”, Russ. J. Math. Phys., 10:1 (2003), 99–108 | MR | Zbl

[2] E. Mitidieri, S. I. Pokhozhaev, “Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh”, Tr. MIAN, 234, Nauka, M., 2001, 1–383 | MR | Zbl