On the Absence of Positive Solutions of Elliptic Equations in Plane Unbounded Domains
Matematičeskie zametki, Tome 85 (2009) no. 2, pp. 261-272
Cet article a éte moissonné depuis la source Math-Net.Ru
Using model equations of the form $\Delta u+u^\sigma=0$ as an example, in both linear ($\sigma=1$) and nonlinear ($\sigma>1$) cases, we show some direct methods of proof of the absence of positive solutions in semi-infinite plane domains. We consider semi-infinite strips, both straight and exponentially decreasing, with homogeneous Neumann condition on the upper and lower boundaries.
Mots-clés :
elliptic equation, Neumann condition.
Keywords: model equation, semi-infinite strip
Keywords: model equation, semi-infinite strip
@article{MZM_2009_85_2_a8,
author = {S. I. Pokhozhaev},
title = {On the {Absence} of {Positive} {Solutions} of {Elliptic} {Equations} in {Plane} {Unbounded} {Domains}},
journal = {Matemati\v{c}eskie zametki},
pages = {261--272},
year = {2009},
volume = {85},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_2_a8/}
}
S. I. Pokhozhaev. On the Absence of Positive Solutions of Elliptic Equations in Plane Unbounded Domains. Matematičeskie zametki, Tome 85 (2009) no. 2, pp. 261-272. http://geodesic.mathdoc.fr/item/MZM_2009_85_2_a8/
[1] V. A. Kondrat'ev, “On the existence of positive solutions of second-order semilinear elliptic equations in cylindrical domains”, Russ. J. Math. Phys., 10:1 (2003), 99–108 | MR | Zbl
[2] E. Mitidieri, S. I. Pokhozhaev, “Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh”, Tr. MIAN, 234, Nauka, M., 2001, 1–383 | MR | Zbl