The Law of the Iterated Logarithm for Sums of Exponentially Stabilizing Functionals
Matematičeskie zametki, Tome 85 (2009) no. 2, pp. 234-245
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider sums of exponentially stabilizing functionals (introduced by Penrose and Yukich) of Poisson point processes in $d$-dimensional Euclidean space. The asymptotic behavior of such sums is studied in terms of a random field (defined on the lattice $\mathbb Z^d$) each element of which is a certain sum of functionals with respect to the corresponding unit cube in $\mathbb R^d$. For this random field, we obtain an exponential estimate of the decrease of the strong mixing coefficient and establish the law of the iterated logarithm.
Keywords:
law of the iterated logarithm, random field, exponentially stabilizing functional, strong mixing coefficient.
Mots-clés : Poisson point process
Mots-clés : Poisson point process
@article{MZM_2009_85_2_a6,
author = {M. M. Musin},
title = {The {Law} of the {Iterated} {Logarithm} for {Sums} of {Exponentially} {Stabilizing} {Functionals}},
journal = {Matemati\v{c}eskie zametki},
pages = {234--245},
publisher = {mathdoc},
volume = {85},
number = {2},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_2_a6/}
}
M. M. Musin. The Law of the Iterated Logarithm for Sums of Exponentially Stabilizing Functionals. Matematičeskie zametki, Tome 85 (2009) no. 2, pp. 234-245. http://geodesic.mathdoc.fr/item/MZM_2009_85_2_a6/