The Law of the Iterated Logarithm for Sums of Exponentially Stabilizing Functionals
Matematičeskie zametki, Tome 85 (2009) no. 2, pp. 234-245.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider sums of exponentially stabilizing functionals (introduced by Penrose and Yukich) of Poisson point processes in $d$-dimensional Euclidean space. The asymptotic behavior of such sums is studied in terms of a random field (defined on the lattice $\mathbb Z^d$) each element of which is a certain sum of functionals with respect to the corresponding unit cube in $\mathbb R^d$. For this random field, we obtain an exponential estimate of the decrease of the strong mixing coefficient and establish the law of the iterated logarithm.
Keywords: law of the iterated logarithm, random field, exponentially stabilizing functional, strong mixing coefficient.
Mots-clés : Poisson point process
@article{MZM_2009_85_2_a6,
     author = {M. M. Musin},
     title = {The {Law} of the {Iterated} {Logarithm} for {Sums} of {Exponentially} {Stabilizing} {Functionals}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {234--245},
     publisher = {mathdoc},
     volume = {85},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_2_a6/}
}
TY  - JOUR
AU  - M. M. Musin
TI  - The Law of the Iterated Logarithm for Sums of Exponentially Stabilizing Functionals
JO  - Matematičeskie zametki
PY  - 2009
SP  - 234
EP  - 245
VL  - 85
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_2_a6/
LA  - ru
ID  - MZM_2009_85_2_a6
ER  - 
%0 Journal Article
%A M. M. Musin
%T The Law of the Iterated Logarithm for Sums of Exponentially Stabilizing Functionals
%J Matematičeskie zametki
%D 2009
%P 234-245
%V 85
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_2_a6/
%G ru
%F MZM_2009_85_2_a6
M. M. Musin. The Law of the Iterated Logarithm for Sums of Exponentially Stabilizing Functionals. Matematičeskie zametki, Tome 85 (2009) no. 2, pp. 234-245. http://geodesic.mathdoc.fr/item/MZM_2009_85_2_a6/

[1] D. J. Daley, D. Vere-Jones, An Introduction to the Theory of Point Processes. Vol. I. Elementary theory and methods, Probab. Appl. (N. Y.), Springer-Verlag, New York, 2003 | MR | Zbl

[2] O. Kallenberg, Random Measures, Academic Press, New York, 1986 | MR | Zbl

[3] M. D. Penrose, J. E. Yukich, “Central limit theorems for some graphs in computational geometry”, Ann. Appl. Probab., 11:4 (2001), 1005–1041 | MR | Zbl

[4] M. D. Penrose, J. E. Yukich, “Weak laws of large numbers in geometric probability”, Ann. Appl. Probab., 13:1 (2003), 277–303 | DOI | MR | Zbl

[5] Yu. Baryshnikov, P. Eichelsbacher, T. Schreiber, J. E. Yukich, “Moderate deviations for some point measures in geometric probability”, Ann. Inst. Henri Poincaré Probab. Stat., 44:3 (2008), 422–446 | DOI | MR

[6] Yu. Baryshnikov, J. E. Yukich, “Gaussian limits for random measures in geometric probability”, Ann. Appl. Probab., 15:1A (2005), 213–253 | DOI | MR | Zbl

[7] M. D. Penrose, J. E. Yukich, “Normal approximation in geometric probability”, Stein's Method and Applications, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 5, Singapore Univ. Press, Singapore, 2005, 37–58 | MR

[8] F. Avram, D. Bertsimas, “On central limit theorems in geometrical probability”, Ann. Appl. Probab., 3:4 (1993), 1033–1046 | DOI | MR | Zbl

[9] M. D. Penrose, Convergence of Random Measures in Geometric Probability, arXiv: math.PR/0508464

[10] A. V. Bulinskii, Predelnye teoremy v usloviyakh slaboi zavisimosti, Izd-vo MGU, M., 1989

[11] I. Berkes, G. J. Morrow, “Strong invariance principle for mixing random fields”, Z. Wahrsch. Verw. Gebiete, 57:1 (1981), 15–37 | DOI | MR | Zbl

[12] P. Doukhan, Mixing. Properties and Examples, Lecture Notes in Statist., 85, Springer-Verlag, New York, 1994 | MR | Zbl

[13] F. Móricz, “A general moment inequality for the maximum of the rectangular partial sums of multiple series”, Acta Math. Hungar., 41:3–4 (1983), 337–346 | DOI | MR | Zbl

[14] A. Bulinski, A. Shashkin, Limit Theorems for Associated Random Fields and Related Systems, Adv. Ser. Stat. Sci. Appl. Probab., 10, World Sci. Publ., Hackensack, NJ, 2007 | MR | Zbl

[15] D. Sanklodas, “Otsenka skorosti skhodimosti v tsentralnoi predelnoi teoreme dlya slabozavisimykh sluchainykh polei”, Litovsk. matem. sb., 26:3 (1986), 541–559 | MR | Zbl

[16] V. V. Petrov, Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Teoriya veroyatnostei i matematicheskaya statistika, 39, Nauka, M., 1987 | MR | Zbl

[17] M. J. Wichura, “Inequalities with applications to the weak convergence of random processes with multi-dimensional time parameters”, Ann. Math. Statist., 40:2 (1969), 681–687 | DOI | MR | Zbl