A Simple Pursuit--Evasion Problem on a Ball of a Riemannian Manifold
Matematičeskie zametki, Tome 85 (2009) no. 2, pp. 204-213.

Voir la notice de l'article provenant de la source Math-Net.Ru

A pursuit–evasion differential game with simple motions, in which points (players) move on a ball of a Riemannian manifold, is studied. It is assumed that all players have the same dynamic capabilities, pursuers move on the entire ball, and evaders move either on the sphere bounding the ball or on the entire ball, depending on the version of the game. Sufficient solvability conditions are found. An example is given.
Keywords: pursuit–evasion problem, simple pursuit and evasion, pursuit on a ball of a Riemannian manifold, possibility of evasion, possibility of pursuit completion.
@article{MZM_2009_85_2_a3,
     author = {A. Sh. Kuchkarov},
     title = {A {Simple} {Pursuit--Evasion} {Problem} on a {Ball} of a {Riemannian} {Manifold}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {204--213},
     publisher = {mathdoc},
     volume = {85},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_2_a3/}
}
TY  - JOUR
AU  - A. Sh. Kuchkarov
TI  - A Simple Pursuit--Evasion Problem on a Ball of a Riemannian Manifold
JO  - Matematičeskie zametki
PY  - 2009
SP  - 204
EP  - 213
VL  - 85
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_2_a3/
LA  - ru
ID  - MZM_2009_85_2_a3
ER  - 
%0 Journal Article
%A A. Sh. Kuchkarov
%T A Simple Pursuit--Evasion Problem on a Ball of a Riemannian Manifold
%J Matematičeskie zametki
%D 2009
%P 204-213
%V 85
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_2_a3/
%G ru
%F MZM_2009_85_2_a3
A. Sh. Kuchkarov. A Simple Pursuit--Evasion Problem on a Ball of a Riemannian Manifold. Matematičeskie zametki, Tome 85 (2009) no. 2, pp. 204-213. http://geodesic.mathdoc.fr/item/MZM_2009_85_2_a3/

[1] R. Aizeks, Differentsialnye igry, Mir, M., 1967 | MR | Zbl

[2] N. N. Krasovskii, Upravleniya dinamicheskoi sistemoi: Zadacha o minimume garantirovannogo rezultata, Nauka, M., 1985 | MR | Zbl

[3] A. I. Subbotin, A. G. Chentsov, Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981 | MR | Zbl

[4] N. N. Krasovskii, A. I. Subbotin, Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR | Zbl

[5] F. L. Chernousko, A. A. Melikyan, Igrovye zadachi upravleniya i poiska, Nauka, M., 1978 | MR | Zbl

[6] A. A. Melikyan, N. V. Ovakimyan, “Differentsialnaya igra prostogo sblizheniya na mnogoobraziyakh”, PMM, 57:1 (1993), 41–51 | MR | Zbl

[7] A. A. Melikyan, N. V. Ovakimyan, “Osobye traektorii v igrovykh zadachakh prostogo sblizheniya na mnogoobraziyakh”, PMM, 55:1 (1991), 54–62 | MR | Zbl

[8] A. Sh. Kuchkarov, “Zadacha optimalnogo sblizheniya v lokalno-evklidovykh prostranstvakh”, Avtomatika i telemekhanika, 2007, no. 6, 45–50 | MR | Zbl

[9] A. A. Azamov, “O zadache ubeganiya po zadannoi krivoi”, PMM, 46:4 (1982), 694–696 | MR | Zbl

[10] R. P. Ivanov, “Prostoe presledovanie-ubeganie na kompakte”, Dokl. AN SSSR, 254:6 (1980), 1318–1321 | MR | Zbl

[11] N. Yu. Satimov, A. Sh. Kuchkarov, “Uklonenie ot vstrechi so mnogimi presledovatelyami na poverkhnosti”, Uzbeksk. matem. zhurn., 2001, no. 1, 51–55 | MR

[12] A. Sh. Kuchkarov, “O zadache presledovaniya-ubeganiya na sfere”, Dokl. Adygskoi (Cherkesskoi) mezhdunar. AN, 6:2 (2003), 104–108

[13] A. Sh. Kuchkarov, B. B. Rikhsiev, “O reshenii odnoi zadachi presledovaniya s fazovymi ogranicheniyami”, Avtomatika i telemekhanika, 2001, no. 8, 41–45 | MR | Zbl

[14] R. L. Bishop, R. Dzh. Krittenden, Geometriya mnogoobrazii, Mir, M., 1967 | MR | Zbl

[15] D. Gromol, V. Klingenberg, V. Meier, Rimanova geometriya v tselom, Mir, M., 1971 | MR | Zbl