On the Zeros of Analytic Functions in the Disk with a Given Majorant near Its Boundary
Matematičeskie zametki, Tome 85 (2009) no. 2, pp. 300-312.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $\lambda$ is an arbitrary positive function from $C[0,1)$, such that $\lambda(r)\to\infty$ as $r\to 1-0$ and satisfying some growth regularity conditions, $A(\lambda)$ is the set of all holomorphic functions $f$ in the unit disk for which ${\ln}|f(z)|\le c\cdot\lambda(|z|)$, $|z|1$. In this paper, we establish that there exists a function $f\in A(\lambda)$ with root set $\{z_k\}_{k=1}^{+\infty}$ such that the sequence $\{|z_k|\}_{k=1}^{+\infty}$ is the uniqueness set for the class $A(\lambda)$.
Keywords: analytic function, holomorphic function, root set, uniqueness set, Nevanlinna characteristic, Blaschke condition.
@article{MZM_2009_85_2_a12,
     author = {F. A. Shamoyan},
     title = {On the {Zeros} of {Analytic} {Functions} in the {Disk} with a {Given} {Majorant} near {Its} {Boundary}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {300--312},
     publisher = {mathdoc},
     volume = {85},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_2_a12/}
}
TY  - JOUR
AU  - F. A. Shamoyan
TI  - On the Zeros of Analytic Functions in the Disk with a Given Majorant near Its Boundary
JO  - Matematičeskie zametki
PY  - 2009
SP  - 300
EP  - 312
VL  - 85
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_2_a12/
LA  - ru
ID  - MZM_2009_85_2_a12
ER  - 
%0 Journal Article
%A F. A. Shamoyan
%T On the Zeros of Analytic Functions in the Disk with a Given Majorant near Its Boundary
%J Matematičeskie zametki
%D 2009
%P 300-312
%V 85
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_2_a12/
%G ru
%F MZM_2009_85_2_a12
F. A. Shamoyan. On the Zeros of Analytic Functions in the Disk with a Given Majorant near Its Boundary. Matematičeskie zametki, Tome 85 (2009) no. 2, pp. 300-312. http://geodesic.mathdoc.fr/item/MZM_2009_85_2_a12/

[1] R. Nevanlinna, Odnoznachnye analiticheskie funktsii, Gostekhizdat, M., 1941 | MR | Zbl

[2] M. M. Dzhrbashyan, “Teoriya faktorizatsii funktsii, meromorfnykh v kruge”, Matem. sb., 79:4 (1969), 517–615 | MR | Zbl

[3] F. A. Shamoyan, “Parametricheskoe predstavlenie i opisanie kornevykh mnozhestv vesovykh klassov golomorfnykh v kruge funktsii”, Sib. matem. zhurn., 40:6 (1999), 1422–1440 | MR | Zbl

[4] F. A. Shamoyan, E. N. Shubabko, “Parametrical representations of some classes of holomorfic funcftions in the disc”, Complex Analysis, Operators, and Related Topics, Oper. Theory Adv. Appl., 113, Birkhäuser, Basel, 2000, 331–338 | MR | Zbl

[5] A. A. Goldberg, I. V. Ostrovskii, Raspredelenie znachenii meromorfnykh funktsii, Nauka, M., 1970 | MR | Zbl

[6] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956 | MR | Zbl

[7] M. M. Dzhrbashyan, “K probleme predstavimosti analiticheskikh funktsii”, Soobsch. In-ta matem. i mekh. AN ArmSSR, 2 (1948), 3–40

[8] H. S. Shapiro, A. L. Shields, “On the zeros of functions with finite Dirichlet integral and some related functions spaces”, Math. Z., 80:1 (1962), 217–229 | DOI | MR | Zbl

[9] F. A. Shamoyan, “O nulyakh analiticheskikh v kruge funktsii, rastuschikh vblizi ego granitsy”, Izv. AN ArmSSR. Ser. matem., 18:1 (1983), 15–27 | MR | Zbl

[10] A. E. Djrbashyan, F. A. Shamoyan, Topics in the Theory of $A_\alpha^p$ Spaces, Teubner-Texte Math., 105, Teubner Verlagsgesellschaft, Leipzig, 1988 | MR | Zbl

[11] H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman Spaces, Grad. Texts in Math., 199, Springer-Verlag, New York, 2000 | MR | Zbl

[12] K. Seip, “Beurling type density theorems in the unit disk”, Invent. Math., 113:1 (1993), 21–39 | DOI | MR | Zbl

[13] K. Seip, “An extension of the Blaschke condition”, J. London Math. Soc. (2), 51:3 (1995), 545–558 | MR | Zbl

[14] F. A. Shamoyan, “On some properties of zero sets of analytic functions with a given majorant”, Theory of Functions and Applications, Yerevan Publ. House, Yerevan, 1995, 169–171

[15] F. A. Shamoyan, “Postroenie analiticheskikh v kruge funktsii s zadannymi asimptoticheskimi svoistvami”, Vestn. BGU. Ser. estestv. nauki, 2006, no. 4, 222–233

[16] S. O. Varshavskii, “O konformnykh otobrazheniyakh beskonechnykh polos”, Matematika. Sb. per., 2, 4, 1958, 66–116

[17] F. A. Shamoyan, “Faktorizatsionnaya teorema M. M. Dzhrbashyana i kharakterizatsiya nulei analiticheskikh v kruge funktsii s mazhorantoi konechnogo poryadka”, Izv. AN ArmSSR. Ser. matem., 13:5–6 (1978), 405–422 | MR | Zbl

[18] W. K. Hayman, F. M. Stewart, “Real inequalities with applications to function theory”, Proc. Cambridge Philos. Soc., 50 (1954), 250–260 | DOI | MR | Zbl

[19] U. K. Kheiman, Meromorfnye funktsii, Mir, M., 1966 | MR | Zbl