Integration of Both the Derivatives with Respect to $\mathscr{P}$-Paths and Approximative Derivatives
Matematičeskie zametki, Tome 85 (2009) no. 2, pp. 283-291

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, in terms of generalized absolute continuity, we present a descriptive characteristic of the primitive with respect to a system of $\mathscr P$-paths and study the relationship between the Denjoy–Khinchin integral and the Henstock $H_{\mathscr P}$-integral.
Keywords: absolute continuity, system of $\mathscr P$-paths, Denjoy–Khinchin integral, Henstock $H_{\mathscr P}$-integral.
@article{MZM_2009_85_2_a10,
     author = {V. A. Skvortsov and F. Tulone},
     title = {Integration of {Both} the {Derivatives} with {Respect} to $\mathscr{P}${-Paths} and {Approximative} {Derivatives}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {283--291},
     publisher = {mathdoc},
     volume = {85},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_2_a10/}
}
TY  - JOUR
AU  - V. A. Skvortsov
AU  - F. Tulone
TI  - Integration of Both the Derivatives with Respect to $\mathscr{P}$-Paths and Approximative Derivatives
JO  - Matematičeskie zametki
PY  - 2009
SP  - 283
EP  - 291
VL  - 85
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_2_a10/
LA  - ru
ID  - MZM_2009_85_2_a10
ER  - 
%0 Journal Article
%A V. A. Skvortsov
%A F. Tulone
%T Integration of Both the Derivatives with Respect to $\mathscr{P}$-Paths and Approximative Derivatives
%J Matematičeskie zametki
%D 2009
%P 283-291
%V 85
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_2_a10/
%G ru
%F MZM_2009_85_2_a10
V. A. Skvortsov; F. Tulone. Integration of Both the Derivatives with Respect to $\mathscr{P}$-Paths and Approximative Derivatives. Matematičeskie zametki, Tome 85 (2009) no. 2, pp. 283-291. http://geodesic.mathdoc.fr/item/MZM_2009_85_2_a10/