Condensing Timetables with Target Date Divisible by Each Instructor's Number of Teaching Hours
Matematičeskie zametki, Tome 85 (2009) no. 1, pp. 65-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

Initial data required to construct a school timetable which can be represented as a matrix with a constant number of nonzero elements in each row and a constant set of elements in each column are considered. Conditions are determined under which this matrix can be transformed so that the sets of elements in each row and each column are preserved and the nonzero elements in every row are consecutive.
Keywords: scheduling, timetabling, condensed timetable, multigraph, Hamiltonian cycle, dynamic programming.
Mots-clés : integer matrix, multiset
@article{MZM_2009_85_1_a5,
     author = {A. M. Magomedov},
     title = {Condensing {Timetables} with {Target} {Date} {Divisible} by {Each} {Instructor's} {Number} of {Teaching} {Hours}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {65--72},
     publisher = {mathdoc},
     volume = {85},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a5/}
}
TY  - JOUR
AU  - A. M. Magomedov
TI  - Condensing Timetables with Target Date Divisible by Each Instructor's Number of Teaching Hours
JO  - Matematičeskie zametki
PY  - 2009
SP  - 65
EP  - 72
VL  - 85
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a5/
LA  - ru
ID  - MZM_2009_85_1_a5
ER  - 
%0 Journal Article
%A A. M. Magomedov
%T Condensing Timetables with Target Date Divisible by Each Instructor's Number of Teaching Hours
%J Matematičeskie zametki
%D 2009
%P 65-72
%V 85
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a5/
%G ru
%F MZM_2009_85_1_a5
A. M. Magomedov. Condensing Timetables with Target Date Divisible by Each Instructor's Number of Teaching Hours. Matematičeskie zametki, Tome 85 (2009) no. 1, pp. 65-72. http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a5/

[1] S. Even, A. Itai, A. Shamir, “On the complexity of timetable and multicommodity flow problems”, SIAM J. Comput., 5:4 (1976), 691–703 | DOI | MR | Zbl

[2] A. M. Magomedov, “Usloviya uplotneniya raspisaniya”, Tezisy dokladov V mezhdunarodnoi konferentsii po matematicheskomu modelirovaniyu, posvyaschennoi 75-letiyu akademika V. N. Monakhova, Izd-vo OOO “RITs Ofset”, Yakutsk, 2007, 65

[3] A. M. Magomedov, “Defragmentatsiya tablits perestanovok s sokhraneniem naborov elementov v liniyakh”, Problemy teoreticheskoi kibernetiki, Tezisy dokladov XIV mezhdunarodnoi konferentsii posvyaschennoi 80-letiyu so dnya rozhdeniya S. V. Yablonskogo, Izd-vo mekh.-mat. fak-ta MGU, M., 2005, 92

[4] A. M. Magomedov, “Razmeschenie nedelimykh 2-slov v matritse kak zadacha faktorizatsii grafa”, Vestn. Dagestansk. nauchn. tsentra, 2006, no. 23, 5–14

[5] A. M. Magomedov, “Defragmentatsiya matritsy perestanovok v nekotorykh chastnykh sluchayakh”, Materialy IX mezhdunarodnogo seminara “Diskretnaya matematika i prilozheniya”, posvyaschennogo pamyati akademika O. B. Lupanova, Izd-vo mekh.-mat. fak-ta MGU, M., 2007, 200

[6] J. Petersen, “Die Theorie der regulären graphs”, Acta Math., 15:1 (1891), 193–220 | DOI | MR | Zbl

[7] V. S. Tanaev, Yu. N. Sotskov, V. A. Strusevich, Teoriya raspisanii. Mnogostadiinye sistemy, Ekonomiko-matematicheskaya biblioteka, Nauka, M., 1989 | MR | Zbl