On the Joint Universality of Periodic Zeta Functions
Matematičeskie zametki, Tome 85 (2009) no. 1, pp. 54-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we obtain the joint universality (in the sense of Voronin) of Dirichlet series with periodic multiplicative coefficients. The proof is based on a joint limit theorem in the space of analytic functions.
Keywords: periodic zeta function, Dirichlet series, analytic function, meromorphic function, zeta function, Euler function, probability measure.
Mots-clés : Lebesgue measure
@article{MZM_2009_85_1_a4,
     author = {A. P. Laurincikas and R. Macaitien\'e},
     title = {On the {Joint} {Universality} of {Periodic} {Zeta} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {54--64},
     publisher = {mathdoc},
     volume = {85},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a4/}
}
TY  - JOUR
AU  - A. P. Laurincikas
AU  - R. Macaitiené
TI  - On the Joint Universality of Periodic Zeta Functions
JO  - Matematičeskie zametki
PY  - 2009
SP  - 54
EP  - 64
VL  - 85
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a4/
LA  - ru
ID  - MZM_2009_85_1_a4
ER  - 
%0 Journal Article
%A A. P. Laurincikas
%A R. Macaitiené
%T On the Joint Universality of Periodic Zeta Functions
%J Matematičeskie zametki
%D 2009
%P 54-64
%V 85
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a4/
%G ru
%F MZM_2009_85_1_a4
A. P. Laurincikas; R. Macaitiené. On the Joint Universality of Periodic Zeta Functions. Matematičeskie zametki, Tome 85 (2009) no. 1, pp. 54-64. http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a4/

[1] J. Steuding, Value-Distribution of $L$-Functions and Allied Zeta-Functions with an Emphasis on Aspects of Universality, Habilitationschrift, J. W. Goethe Universität, Frankfurt, 2003

[2] A. Laurinchikas, D. Shyauchyunas, “Zamechaniya ob universalnosti periodicheskoi dzeta-funktsii”, Matem. zametki, 80:4 (2006), 561–568 | MR | Zbl

[3] J. Steuding, Value-Distribution of $L$-functions, Lectures Notes in Math., 1877, Springer, Berlin–Heidelberg–New York, 2007 | DOI | MR | Zbl

[4] S. M. Voronin, “Teorema ob “universalnosti” dzeta-funktsii Rimana”, Izv. AN SSSR. Ser. matem., 39:3 (1975), 475–486 | MR | Zbl

[5] S. M. Voronin, A. A. Karatsuba, Dzeta-funktsiya Rimana, Fizmatlit, M., 1994 | MR | Zbl

[6] S. M. Voronin, Izbrannye trudy: matematika, Izd-vo MGTU im. N. E. Baumana, M., 2006

[7] A. Laurinčikas, Limit Theorems for the Riemann Zeta-Function, Math. Appl., 352, Kluwer Acad. Publ., Dordrecht, 1996 | MR | Zbl

[8] S. M. Voronin, “O funktsionalnoi nezavisimosti $L$-funktsii Dirikhle”, Acta Arith., 27 (1975), 493–503 | MR | Zbl

[9] S. M. Gonek, Analytic Properties of Zeta and $L$-Functions, Thesis, University of Michigan, 1979

[10] B. Bagchi, “A joint universality theorem for Dirichlet $L$-functions”, Math. Z., 181:3 (1982), 319–334 | DOI | MR | Zbl

[11] A. Kačėnas, D. Šiaučiūnas, “On the periodic zeta-function. III”, Analytic and Probabilistic Methods in Number Theory (Palanga, 2001), TEV, Vilnius, 2002, 99–108 | MR | Zbl

[12] A. Laurinčikas, K. Matsumoto, “The joint universality of zeta-functions attached to certain cusp forms”, Fiz. Mat. Fak. Moksl. Semin. Darb., 5, 2002, 58–75 | MR | Zbl

[13] E. K. Titchmarsh, Teoriya funktsii, Nauka, M., 1980 | MR | Zbl

[14] Dzh. L. Uolsh, Interpolyatsiya i approksimatsiya ratsionalnymi funktsiyami v kompleksnoi oblasti, IL, M., 1961 | MR | Zbl

[15] P. Bilingsli, Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR | Zbl