Periodic Solutions of a Quasilinear Wave Equation
Matematičeskie zametki, Tome 85 (2009) no. 1, pp. 36-53

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the properties of wave operators satisfying the periodicity condition with respect to time and homogeneous boundary conditions of the third kind and of Dirichlet type. We prove the existence of a nontrivial periodic (in time) $\sin$-Gordon solution with homogeneous boundary conditions of the third kind and of Dirichlet type. We obtain theorems on the existence of periodic solutions of a quasilinear wave equation with variable (in $x$) coefficients and a boundary condition of the third kind.
Keywords: quasilinear wave equation, boundary condition of the third kind, Dirichlet boundary condition, Sobolev space.
Mots-clés : $\sin$-Gordon solution, Sturm–Liouville problem
@article{MZM_2009_85_1_a3,
     author = {V. A. Kondrat'ev and I. A. Rudakov},
     title = {Periodic {Solutions} of a {Quasilinear} {Wave} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {36--53},
     publisher = {mathdoc},
     volume = {85},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a3/}
}
TY  - JOUR
AU  - V. A. Kondrat'ev
AU  - I. A. Rudakov
TI  - Periodic Solutions of a Quasilinear Wave Equation
JO  - Matematičeskie zametki
PY  - 2009
SP  - 36
EP  - 53
VL  - 85
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a3/
LA  - ru
ID  - MZM_2009_85_1_a3
ER  - 
%0 Journal Article
%A V. A. Kondrat'ev
%A I. A. Rudakov
%T Periodic Solutions of a Quasilinear Wave Equation
%J Matematičeskie zametki
%D 2009
%P 36-53
%V 85
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a3/
%G ru
%F MZM_2009_85_1_a3
V. A. Kondrat'ev; I. A. Rudakov. Periodic Solutions of a Quasilinear Wave Equation. Matematičeskie zametki, Tome 85 (2009) no. 1, pp. 36-53. http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a3/