On the Magnitudes of Deviations of Entire Functions of Infinite Order from Rational Functions
Matematičeskie zametki, Tome 85 (2009) no. 1, pp. 22-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

The magnitudes of deviations $b(a,f)$ of entire functions of infinite order from rational functions are studied.
Keywords: entire function, rational function, meromorphic function, Nevanlinna's second theorem, logarithmic derivative, subharmonic function, $T^*$-Baernstein function.
@article{MZM_2009_85_1_a2,
     author = {L. V. Kaluzhynova and I. I. Marchenko},
     title = {On the {Magnitudes} of {Deviations} of {Entire} {Functions} of {Infinite} {Order} from {Rational} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {22--35},
     publisher = {mathdoc},
     volume = {85},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a2/}
}
TY  - JOUR
AU  - L. V. Kaluzhynova
AU  - I. I. Marchenko
TI  - On the Magnitudes of Deviations of Entire Functions of Infinite Order from Rational Functions
JO  - Matematičeskie zametki
PY  - 2009
SP  - 22
EP  - 35
VL  - 85
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a2/
LA  - ru
ID  - MZM_2009_85_1_a2
ER  - 
%0 Journal Article
%A L. V. Kaluzhynova
%A I. I. Marchenko
%T On the Magnitudes of Deviations of Entire Functions of Infinite Order from Rational Functions
%J Matematičeskie zametki
%D 2009
%P 22-35
%V 85
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a2/
%G ru
%F MZM_2009_85_1_a2
L. V. Kaluzhynova; I. I. Marchenko. On the Magnitudes of Deviations of Entire Functions of Infinite Order from Rational Functions. Matematičeskie zametki, Tome 85 (2009) no. 1, pp. 22-35. http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a2/

[1] R. Nevanlinna, Odnoznachnye analiticheskie funktsii, OGIZ, M., 1941 | MR | Zbl

[2] G. Frank, G. Weissenborn, “Rational deficient functions of meromorphic functions”, Bull. London Math. Soc., 18:1 (1986), 29–33 | DOI | MR | Zbl

[3] N. Steinmetz, “Eine Verallgemeinerung des zweiten Nevanlinnaschen Hauptsatzes”, J. Reine Angew. Math., 368 (1986), 134–141 | MR | Zbl

[4] V. P. Petrenko, Rost meromorfnykh funktsii, Vischa shkola, Kharkov, 1978 | MR | Zbl

[5] R. E. A. C. Paley, “A note on integral functions”, Proc. Cambridge Philos. Soc., 28 (1932), 262–265 | DOI | Zbl

[6] N. V. Govorov, “O gipoteze Peili”, Funkts. analiz i ego pril., 3:2 (1969), 41–45 | MR | Zbl

[7] V. P. Petrenko, “Rost meromorfnykh funktsii konechnogo nizhnego poryadka”, Izv. AN SSSR. Ser. matem., 33:2 (1969), 414–454 | MR | Zbl

[8] A. A. Goldberg, I. V. Ostrovskii, Raspredelenie znachenii meromorfnykh funktsii, Nauka, M., 1970 | MR | Zbl

[9] I. I. Marchenko, A. I. Scherba, “O velichinakh otklonenii meromorfnykh funktsii”, Matem. sb., 181:1 (1990), 3–24 | MR | Zbl

[10] E. Ciechanowicz, I. I. Marchenko, “On deviations from rational functions of entire functions of finite lower order”, Ann. Polon. Math., 91:2–3 (2007), 161–177 | DOI | MR | Zbl

[11] W. Bergweiler, H. Bock, “On the growth of meromorphic functions of infinite order”, J. Anal. Math., 64 (1994), 327–336 | DOI | MR | Zbl

[12] U. K. Kheiman, Meromorfnye funktsii, Mir, M., 1966 | MR | Zbl

[13] A. Eremenko, “An analogue of the defect relation for the uniform metric”, Complex Variables Theory Appl., 34:1–2 (1997), 83–97 | MR | Zbl

[14] I. I. Marchenko, “O roste tselykh i meromorfnykh funktsii”, Matem. sb., 189:6 (1998), 59–84 | MR | Zbl

[15] A. Weitsman, “A theorem on Nevanlinna deficiencies”, Acta Math., 128:1–2 (1972), 41–52 | DOI | MR | Zbl

[16] U. K. Kheiman, Mnogolistnye funktsii, IL, M., 1960 | MR | Zbl

[17] A. Baernstein II, “Integral means, univalent functions and circular symmetrization”, Acta Math., 133:1 (1974), 139–169 | DOI | MR | Zbl

[18] I. I. Marchenko, “Ob analoge vtoroi osnovnoi teoremy dlya ravnomernoi metriki”, Matem. fizika, analiz, geometriya, 5:3–4 (1998), 212–227 | MR | Zbl

[19] M. Essen, D. F. Shea, “Applications of Denjoy integral inequalities and differential inequalities to growth problems for subharmonic and meromorphic functions”, Proc. Roy. Irish Acad. Sect. A, 82:2 (1982), 201–216 | MR | Zbl

[20] R. Gariepy, J. L. Lewis, “Space Analogues of some theorems for subharmonic and meromorphic functions”, Ark. Mat., 13:1–2 (1975), 91–105 | DOI | MR | Zbl