Nonlinear Diameters of Classes of Smooth Functions Defined on the Unit Sphere in~$\mathbb R^{d}$
Matematičeskie zametki, Tome 85 (2009) no. 1, pp. 147-152

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: weak asymptotics, nonlinear diameter, nonlinear $n$-width, Laplace–Beltrami operator
Mots-clés : Lebesgue measure, harmonic polynomial, Fourier–Laplace coefficient.
@article{MZM_2009_85_1_a15,
     author = {V. S. Romanyuk},
     title = {Nonlinear {Diameters} of {Classes} of {Smooth} {Functions} {Defined} on the {Unit} {Sphere} in~$\mathbb R^{d}$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {147--152},
     publisher = {mathdoc},
     volume = {85},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a15/}
}
TY  - JOUR
AU  - V. S. Romanyuk
TI  - Nonlinear Diameters of Classes of Smooth Functions Defined on the Unit Sphere in~$\mathbb R^{d}$
JO  - Matematičeskie zametki
PY  - 2009
SP  - 147
EP  - 152
VL  - 85
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a15/
LA  - ru
ID  - MZM_2009_85_1_a15
ER  - 
%0 Journal Article
%A V. S. Romanyuk
%T Nonlinear Diameters of Classes of Smooth Functions Defined on the Unit Sphere in~$\mathbb R^{d}$
%J Matematičeskie zametki
%D 2009
%P 147-152
%V 85
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a15/
%G ru
%F MZM_2009_85_1_a15
V. S. Romanyuk. Nonlinear Diameters of Classes of Smooth Functions Defined on the Unit Sphere in~$\mathbb R^{d}$. Matematičeskie zametki, Tome 85 (2009) no. 1, pp. 147-152. http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a15/