Nonlinear Diameters of Classes of Smooth Functions Defined on the Unit Sphere in~$\mathbb R^{d}$
Matematičeskie zametki, Tome 85 (2009) no. 1, pp. 147-152.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: weak asymptotics, nonlinear diameter, nonlinear $n$-width, Laplace–Beltrami operator
Mots-clés : Lebesgue measure, harmonic polynomial, Fourier–Laplace coefficient.
@article{MZM_2009_85_1_a15,
     author = {V. S. Romanyuk},
     title = {Nonlinear {Diameters} of {Classes} of {Smooth} {Functions} {Defined} on the {Unit} {Sphere} in~$\mathbb R^{d}$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {147--152},
     publisher = {mathdoc},
     volume = {85},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a15/}
}
TY  - JOUR
AU  - V. S. Romanyuk
TI  - Nonlinear Diameters of Classes of Smooth Functions Defined on the Unit Sphere in~$\mathbb R^{d}$
JO  - Matematičeskie zametki
PY  - 2009
SP  - 147
EP  - 152
VL  - 85
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a15/
LA  - ru
ID  - MZM_2009_85_1_a15
ER  - 
%0 Journal Article
%A V. S. Romanyuk
%T Nonlinear Diameters of Classes of Smooth Functions Defined on the Unit Sphere in~$\mathbb R^{d}$
%J Matematičeskie zametki
%D 2009
%P 147-152
%V 85
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a15/
%G ru
%F MZM_2009_85_1_a15
V. S. Romanyuk. Nonlinear Diameters of Classes of Smooth Functions Defined on the Unit Sphere in~$\mathbb R^{d}$. Matematičeskie zametki, Tome 85 (2009) no. 1, pp. 147-152. http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a15/

[1] I. Stein, G. Veis, Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | MR | Zbl

[2] A. Krattser, V. Frants, Transtsendentnye funktsii, IL, M., 1963 | MR | Zbl

[3] A. Bonami, J.-L. Clerk, Trans. Amer. Math. Soc., 183 (1973), 223–263 | DOI | MR | Zbl

[4] G. Segë, Ortogonalnye mnogochleny, Fizmatgiz, M., 1962 | MR | Zbl

[5] R. A. DeVore, R. Howard, Ch. Micchelli, Manuscripta Math., 63:4 (1989), 469–478 | DOI | MR | Zbl

[6] V. M. Tikhomirov, Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976 | MR

[7] Dinh Dung, Vu Quoc Thanh, Proc. Amer. Math. Soc., 124:9 (1996), 2757–2765 | DOI | MR | Zbl

[8] S. M. Nikolskii, P. I. Lizorkin, Acta Sci. Math. (Szeged), 48:1–4 (1985), 401–416 | MR | Zbl

[9] A. I. Kamzolov, Matem. zametki, 32:3 (1982), 285–293 | MR | Zbl

[10] Yuan Xu, Constr. Approx., 21:1 (2005), 1–28 | MR | Zbl

[11] S. N. Kudryavtsev, Izv. RAN. Ser. matem., 59:4 (1995), 81–104 | MR | Zbl

[12] G. Brown, D. Feng, S. Y. Sheng, J. Complexity, 18:4 (2002), 1001–1023 | DOI | MR | Zbl

[13] A. I. Kamzolov, UMN, 39:2 (1984), 159–160 | MR | Zbl

[14] A. B. Khodulëv, Funkts. analiz i ego pril., 23:2 (1989), 94–95 | MR | Zbl