Criterion for the Nondegeneracy of a Transformation Group
Matematičeskie zametki, Tome 85 (2009) no. 1, pp. 144-146.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mots-clés : transformation group
Keywords: local Lie group, Lie algebra, nondegenerate transformation group, vector product of $2n-1$ vectors in $\mathbb R^{2n}$, motion group of the Euclidean plane.
@article{MZM_2009_85_1_a14,
     author = {V. A. Kyrov},
     title = {Criterion for the {Nondegeneracy} of a {Transformation} {Group}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {144--146},
     publisher = {mathdoc},
     volume = {85},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a14/}
}
TY  - JOUR
AU  - V. A. Kyrov
TI  - Criterion for the Nondegeneracy of a Transformation Group
JO  - Matematičeskie zametki
PY  - 2009
SP  - 144
EP  - 146
VL  - 85
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a14/
LA  - ru
ID  - MZM_2009_85_1_a14
ER  - 
%0 Journal Article
%A V. A. Kyrov
%T Criterion for the Nondegeneracy of a Transformation Group
%J Matematičeskie zametki
%D 2009
%P 144-146
%V 85
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a14/
%G ru
%F MZM_2009_85_1_a14
V. A. Kyrov. Criterion for the Nondegeneracy of a Transformation Group. Matematičeskie zametki, Tome 85 (2009) no. 1, pp. 144-146. http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a14/

[1] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR | Zbl

[2] G. G. Mikhailichenko, Dokl. AN SSSR, 269:2 (1983), 284–288 | MR | Zbl

[3] G. G. Mikhailichenko, Polimetricheskie geometrii, Redaktsionno-izdatelskii tsentr NGU, Novosibirsk, 2001