Existence Theorem for Hyperbolic Systems with a Multiplicity Change Point of at Most the Third Order
Matematičeskie zametki, Tome 85 (2009) no. 1, pp. 139-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: strictly hyperbolic system, Cauchy problem, multiplicity change point, pseudodifferential operator, leading symbol, Hamiltonian system.
Mots-clés : Poisson bracket
@article{MZM_2009_85_1_a13,
     author = {V. V. Kucherenko and A. V. Krivko},
     title = {Existence {Theorem} for {Hyperbolic} {Systems} with a {Multiplicity} {Change} {Point} of at {Most} the {Third} {Order}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {139--143},
     publisher = {mathdoc},
     volume = {85},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a13/}
}
TY  - JOUR
AU  - V. V. Kucherenko
AU  - A. V. Krivko
TI  - Existence Theorem for Hyperbolic Systems with a Multiplicity Change Point of at Most the Third Order
JO  - Matematičeskie zametki
PY  - 2009
SP  - 139
EP  - 143
VL  - 85
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a13/
LA  - ru
ID  - MZM_2009_85_1_a13
ER  - 
%0 Journal Article
%A V. V. Kucherenko
%A A. V. Krivko
%T Existence Theorem for Hyperbolic Systems with a Multiplicity Change Point of at Most the Third Order
%J Matematičeskie zametki
%D 2009
%P 139-143
%V 85
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a13/
%G ru
%F MZM_2009_85_1_a13
V. V. Kucherenko; A. V. Krivko. Existence Theorem for Hyperbolic Systems with a Multiplicity Change Point of at Most the Third Order. Matematičeskie zametki, Tome 85 (2009) no. 1, pp. 139-143. http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a13/

[1] E. Bernardi, A. Bove, Ark. Mat., 43:1 (2005), 113–131 | DOI | MR | Zbl

[2] T. Nishitani, J. Anal. Math., 61 (1993), 181–229 | DOI | MR | Zbl

[3] A. V. Krivko, V. V. Kucherenko, Dokl. RAN, 412:4 (2007), 451–455 | DOI

[4] V. V. Kucherenko, Izv. AN SSSR. Ser. matem., 38:3 (1974), 625–662 | MR | Zbl

[5] V. Ya. Ivrii, V. M. Petkov, UMN, 29:5 (1974), 3–70 | MR | Zbl

[6] R. B. Melrose, G. A. Uhlmann, Comm. Pure Appl. Math., 32:4 (1979), 483–519 | DOI | MR | Zbl

[7] V. V. Kucherenko, A. Kryvko, “Stability of Stationary Solutions of Nonlinear Hyperbolic Systems with Multiple Characteristics”, Proc. 5th International ISAAC Congress (25–30 July, 2005, University of Catania, Italy)

[8] A. Kryvko, Métodos asintóticos para sistemas con características de multiplicidad variable, Thesis, Instituto Politecnico Nacional, Mexico, 2007