Triangular Matrices and Combinatorial Inversion Formulas
Matematičeskie zametki, Tome 85 (2009) no. 1, pp. 12-21
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper is devoted to the construction of the matrix inverse of an infinite triangular matrix and to finding the connection coefficients between polynomial sequences and general combinatorial inversion formulas.
Keywords:
triangular matrix, combinatorial inversion formula, polynomial sequence, Fibonacci numbers, ordered partition of a natural number, Stirling numbers.
Mots-clés : paradeterminant
Mots-clés : paradeterminant
@article{MZM_2009_85_1_a1,
author = {R. A. Zatorskii and A. R. Malyarchuk},
title = {Triangular {Matrices} and {Combinatorial} {Inversion} {Formulas}},
journal = {Matemati\v{c}eskie zametki},
pages = {12--21},
year = {2009},
volume = {85},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a1/}
}
R. A. Zatorskii; A. R. Malyarchuk. Triangular Matrices and Combinatorial Inversion Formulas. Matematičeskie zametki, Tome 85 (2009) no. 1, pp. 12-21. http://geodesic.mathdoc.fr/item/MZM_2009_85_1_a1/
[1] R. A. Zators'kiĭ, “On paradeterminants and parapermanents of triangular matrices”, Mat. Stud., 17:1 (2002), 3–17 | MR | Zbl
[2] R. Stenli, Perechislitelnaya kombinatorika, Mir, M., 1990 | MR | Zbl
[3] G. Endryus, Teoriya razbienii, Nauka, M., 1982 | MR | Zbl
[4] R. A. Zatorskii, “Opredeliteli treugolnykh matrits i traektorii na diagrammakh Ferre”, Matem. zametki, 72:6 (2002), 834–852 | MR | Zbl
[5] M. Aigner, Kombinatornaya teoriya, Mir, M., 1982 | MR | Zbl
[6] Dzh. Riordan, Kombinatornye tozhdestva, Nauka, M., 1982 | MR | Zbl