Embeddings and Separable Differential Operators in Spaces of Sobolev--Lions type
Matematičeskie zametki, Tome 84 (2008) no. 6, pp. 907-926.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study embedding theorems for anisotropic spaces of Bessel–Lions type $H_{p,\gamma}^l(\Omega;E_0,E)$, where $E_0$ and $E$ are Banach spaces. We obtain the most regular spaces $E_\alpha$ for which mixed differentiation operators $D^\alpha$ from $H_{p,\gamma}^l(\Omega;E_0,E)$ to $L_{p,\gamma}(\Omega;E_\alpha)$ are bounded. The spaces $E_\alpha$ are interpolation spaces between $E_0$ and $E$, depending on $\alpha=(\alpha_1,\alpha_2,\dots,\alpha_n)$ and $l=(l_1,l_2,\dots,l_n)$. The results obtained are applied to prove the separability of anisotropic differential operator equations with variable coefficients.
@article{MZM_2008_84_6_a8,
     author = {V. B. Shakhmurov},
     title = {Embeddings and {Separable} {Differential} {Operators} in {Spaces} of {Sobolev--Lions} type},
     journal = {Matemati\v{c}eskie zametki},
     pages = {907--926},
     publisher = {mathdoc},
     volume = {84},
     number = {6},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a8/}
}
TY  - JOUR
AU  - V. B. Shakhmurov
TI  - Embeddings and Separable Differential Operators in Spaces of Sobolev--Lions type
JO  - Matematičeskie zametki
PY  - 2008
SP  - 907
EP  - 926
VL  - 84
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a8/
LA  - ru
ID  - MZM_2008_84_6_a8
ER  - 
%0 Journal Article
%A V. B. Shakhmurov
%T Embeddings and Separable Differential Operators in Spaces of Sobolev--Lions type
%J Matematičeskie zametki
%D 2008
%P 907-926
%V 84
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a8/
%G ru
%F MZM_2008_84_6_a8
V. B. Shakhmurov. Embeddings and Separable Differential Operators in Spaces of Sobolev--Lions type. Matematičeskie zametki, Tome 84 (2008) no. 6, pp. 907-926. http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a8/

[1] O. V. Besov, V. P. Ilin, S. M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[2] V. G. Mazya, Prostranstva S. L. Soboleva, Izd-vo LGU, Leningrad, 1985 | MR | Zbl

[3] H. Triebel, Interpolation Theory. Function Spaces. Differential Operators, North-Holland Publ., Amsterdam–New York, 1978 | MR | Zbl

[4] H. Amann, “Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications”, Math. Nachr., 186 (1997), 5–56 | MR | Zbl

[5] H. Amann, Linear and Quasi-Linear Equations, V. 1, Birkhäuser, Basel, 1995

[6] J.-L. Lions, J. Peetre, “Sur une classe d'espaces d'interpolation”, Inst. Hautes Études Sci. Publ. Math., 19:1 (1964), 5–68 | DOI | MR | Zbl

[7] V. B. Shakhmurov, “Koertsitivnye kraevye zadachi dlya silno vyrozhdayuschikhsya abstraktnykh uravnenii”, Dokl. AN SSSR, 290:3 (1986), 553–556 | MR | Zbl

[8] V. B. Shakhmurov, “Teoremy vlozheniya abstraktnykh funktsionalnykh prostranstv i ikh primeneniya”, Matem. sb., 134:2 (1987), 260–273 | MR | Zbl

[9] V. B. Shakhmurov, “Teoremy o kompaktnykh vlozheniyakh i prilozheniya”, Dokl. AN SSSR, 241:6 (1978), 1285–1287 | MR | Zbl

[10] V. B. Shakhmurov, “Teoremy vlozheniya i ikh prilozheniya k vyrozhdennym uravneniyam”, Differents. uravneniya, 24:4 (1988), 672–682 | MR | Zbl

[11] V. B. Shakhmurov, “Embedding theorems and maximal regular differential-operator equations in Banach-valued function spaces”, J. Inequal. Appl., 2:4 (2005), 329–345 | DOI | MR | Zbl

[12] V. B. Shakhmurov, “Embedding and maximal regular differential operators in Sobolev–Lions spaces”, Acta Math. Sin. (Engl. Ser.), 22:5 (2006), 1493–1508 | DOI | MR | Zbl

[13] V. B. Shakhmurov, “Coercive boundary value problems for regular degenerate differential-operator equations”, J. Math. Anal. Appl., 292:2 (2004), 605–620 | DOI | MR | Zbl

[14] V. B. Shakhmurov, “Nonlinear abstract boundary value problems in vector-valued function spaces and applications”, Nonlinear Anal., 67:3 (2007), 745–762 | DOI | MR | Zbl

[15] P. I. Lizorkin, “Obobschennoe liuvillevskoe differentsirovanie i funktsionalnye prostranstva $L_p^r(E_n)$. Teoremy vlozheniya”, Matem. sb., 60:3 (1963), 325–353 | MR | Zbl

[16] A. Ashyralyev, “On well-posedeness of the nonlocal boundary value problem for elliptic equations”, Numer. Funct. Anal. Optim., 24:1–2 (2003), 1–15 | DOI | MR | Zbl

[17] J. P. Aubin, “Abstract boundary-value operators and their adjoint”, Rend. Sem. Mat. Univ. Padova, 43 (1970), 1–33 | MR | Zbl

[18] D. L. Burkholder, “A geometrical condition that implies the existence of a certain singular integral of Banach space-valued functions”, Conference on Harmonic Analysis in Honor of Antoni Zygmund, V. I, II (Chicago, Ill., 1981), Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, 270–286 | MR | Zbl

[19] Yu. A. Dubinskii, “O nekotorykh differentsialno-operatornykh uravneniyakh proizvolnogo poryadka”, Matem. sb., 90:1 (1973), 3–22 | MR | Zbl

[20] G. Dore, S. Yakubov, “Semigroup estimates and non coercive boundary value problems”, Semigroup Forum, 60:1 (2000), 93–121 | DOI | MR | Zbl

[21] R. Haller, H. Heck, A. Noll, “Mikhlin's theorem for operator-valued Fourier multipliers in $n$ variables”, Math. Nachr., 244:1 (2002), 110–130 | 3.0.CO;2-S class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[22] S. G. Krein, Linear Differential Equations in Banach Space, Amer. Math. Soc., Providence, RI, 1971 | MR | Zbl

[23] S. Yakubov, Completeness of Root Functions of Regular Differential Operators, Pitman Monogr. Surveys Pure Appl. Math., 71, Longman Sci. Tech., Harlow, 1994 | MR | Zbl

[24] S. Yakubov, “A nonlocal boundary value problem for elliptic differential-operator equations and applications”, Integral Equations Operator Theory, 35:4 (1999), 485–506 | DOI | MR | Zbl

[25] S. Yakubov, Ya. Yakubov, Differential-Operator Equations. Ordinary and Partial Differential Equations, Chapman Hall/CRC Monogr. Surv. Pure Appl. Math., 103, Chapmen Hall, Boca Raton, FL, 2000 | MR | Zbl

[26] R. Denk, M. Hieber, J. Prüss, $\mathscr R$-Boundedness, Fourier Multipliers and Problems of Elliptic and Parabolic Type, Mem. Amer. Math. Soc., 166, no. 788, Amer. Math. Soc., Providence, RI, 2003 | MR

[27] A. Favini, “Su un problema ai limit per certa equazini astratte del secondo ordine”, Rend. Sem. Mat. Univ. Padova, 53 (1975), 211–230 | MR | Zbl

[28] L. Weis, “Operator-valued Fourier multiplier theorems and maximal $L_p$-regularity”, Math. Ann., 319:4 (2001), 735–758 | DOI | MR | Zbl

[29] E. M. Stein, Singular Integrals and Differential Properties of Functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, NJ, 1970 | MR | Zbl

[30] V. S. Guliev, “K teorii multiplikatorov integralov Fure dlya funktsii so znacheniyami v banakhovykh prostranstvakh”, Issledovaniya po teorii differentsiruemykh funktsii mnogikh peremennykh i ee prilozheniyam. 17, Tr. MIAN, 214, Nauka, M., 1997, 164–181 | MR | Zbl

[31] J. Bourgain, “Some remarks on Banach spaces in which martingale differences are unconditional”, Ark. Mat., 21:2 (1983), 163–168 | DOI | MR | Zbl

[32] Ph. Clement, B. de Pagter, F. A. Sukochev, H. Witvlet, “Schauder decomposition and multiplier theorems”, Studia Math., 138:2 (2000), 135–163 | MR | Zbl

[33] P. Kree, “Sur les multiplicateurs dans $\mathscr FL_p$ avec poids”, Ann. Inst. Fourier (Grenoble), 16:2 (1966), 91–121 | MR | Zbl

[34] D. S. Kurtz, R. L. Wheeden, “Result on weighted norm inequalities for multiplier”, Trans. Amer. Math. Soc., 255 (1979), 343–362 | DOI | MR | Zbl

[35] V. I. Gorbachuk, M. L. Gorbachuk, Granichnye zadachi dlya differentsialno-operatornykh uravnenii, Naukova dumka, Kiev, 1984 | MR | Zbl

[36] T. R. McConnell, “On Fourier Multiplier Transformations of Banach-Valued Functions”, Trans. Amer. Mat. Soc., 285:2 (1984), 739–757 | DOI | MR | Zbl

[37] G. Pisier, “Les inégalités de Khintchine–Kahane d'après C. Borel”, Exp. No. 7, Séminare sur la Géométrie des Espaces de Banach (1977–1978), École Polytech., Palaiseau, 1978 | MR | Zbl

[38] P. I. Lizorkin, “$(L_p,L_q)$-Multiplikatory integralov Fure”, Dokl. AN SSSR, 152:4 (1963), 808–811 | MR | Zbl

[39] D. Lamberton, “Équations d'évolution linéaires associées à des semi-groupes de contractions dans les espaces $L_p$”, J. Funct. Anal., 72:2 (1987), 252–262 | DOI | MR | Zbl

[40] G. Dore, A. Venni, “On the closedness of the sum of two closed operators”, Math. Z., 196:2 (1987), 189–201 | DOI | MR | Zbl

[41] M. Hieber, J. Prüss, “Heat kernels and maximal $L_p$-$L_q$-estimates for parabolic evolution equations”, Comm. Partial Differential Equations, 22:9–10 (1997), 1647–1669 | DOI | MR | Zbl

[42] S. Agmon, L. Nirenberg, “Properties of solutions of ordinary differential equations in Banach spaces”, Comm. Pure Appl. Math., 16:2 (1963), 121–239 | DOI | MR | Zbl

[43] S. Agmon, “On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems”, Comm. Pure Appl. Math., 15:2 (1962), 119–147 | DOI | MR | Zbl