Embeddings and Separable Differential Operators in Spaces of Sobolev--Lions type
Matematičeskie zametki, Tome 84 (2008) no. 6, pp. 907-926

Voir la notice de l'article provenant de la source Math-Net.Ru

We study embedding theorems for anisotropic spaces of Bessel–Lions type $H_{p,\gamma}^l(\Omega;E_0,E)$, where $E_0$ and $E$ are Banach spaces. We obtain the most regular spaces $E_\alpha$ for which mixed differentiation operators $D^\alpha$ from $H_{p,\gamma}^l(\Omega;E_0,E)$ to $L_{p,\gamma}(\Omega;E_\alpha)$ are bounded. The spaces $E_\alpha$ are interpolation spaces between $E_0$ and $E$, depending on $\alpha=(\alpha_1,\alpha_2,\dots,\alpha_n)$ and $l=(l_1,l_2,\dots,l_n)$. The results obtained are applied to prove the separability of anisotropic differential operator equations with variable coefficients.
@article{MZM_2008_84_6_a8,
     author = {V. B. Shakhmurov},
     title = {Embeddings and {Separable} {Differential} {Operators} in {Spaces} of {Sobolev--Lions} type},
     journal = {Matemati\v{c}eskie zametki},
     pages = {907--926},
     publisher = {mathdoc},
     volume = {84},
     number = {6},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a8/}
}
TY  - JOUR
AU  - V. B. Shakhmurov
TI  - Embeddings and Separable Differential Operators in Spaces of Sobolev--Lions type
JO  - Matematičeskie zametki
PY  - 2008
SP  - 907
EP  - 926
VL  - 84
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a8/
LA  - ru
ID  - MZM_2008_84_6_a8
ER  - 
%0 Journal Article
%A V. B. Shakhmurov
%T Embeddings and Separable Differential Operators in Spaces of Sobolev--Lions type
%J Matematičeskie zametki
%D 2008
%P 907-926
%V 84
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a8/
%G ru
%F MZM_2008_84_6_a8
V. B. Shakhmurov. Embeddings and Separable Differential Operators in Spaces of Sobolev--Lions type. Matematičeskie zametki, Tome 84 (2008) no. 6, pp. 907-926. http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a8/