Development of the Direct Lyapunov Method for Functional-Differential Equations with Infinite Delay
Matematičeskie zametki, Tome 84 (2008) no. 6, pp. 888-906.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose new sufficient conditions for the uniform asymptotic stability of the zero solution of a retarded functional-differential equation with unbounded (infinite) delay. The equation can be nonlinear and nonautonomous. The conditions are formulated in terms of Razumikhin-type functions, and in this case, a function is coupled with a functional related to this function by a certain dependence. In the results presented here, because of additional restrictions imposed on the right-hand side of the equation and the use of the limiting equation techniques, the classical requirements stating that the function and its derivative must be of fixed sign along the solution are weakened to the requirements that the function and its derivative must be of constant signs.
Keywords: retarded functional-differential equation, infinite delay, uniform asymptotic stability, separability, phase space, Arzelà theorem.
Mots-clés : zero solution
@article{MZM_2008_84_6_a7,
     author = {N. O. Sedova},
     title = {Development of the {Direct} {Lyapunov} {Method} for {Functional-Differential} {Equations} with {Infinite} {Delay}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {888--906},
     publisher = {mathdoc},
     volume = {84},
     number = {6},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a7/}
}
TY  - JOUR
AU  - N. O. Sedova
TI  - Development of the Direct Lyapunov Method for Functional-Differential Equations with Infinite Delay
JO  - Matematičeskie zametki
PY  - 2008
SP  - 888
EP  - 906
VL  - 84
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a7/
LA  - ru
ID  - MZM_2008_84_6_a7
ER  - 
%0 Journal Article
%A N. O. Sedova
%T Development of the Direct Lyapunov Method for Functional-Differential Equations with Infinite Delay
%J Matematičeskie zametki
%D 2008
%P 888-906
%V 84
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a7/
%G ru
%F MZM_2008_84_6_a7
N. O. Sedova. Development of the Direct Lyapunov Method for Functional-Differential Equations with Infinite Delay. Matematičeskie zametki, Tome 84 (2008) no. 6, pp. 888-906. http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a7/

[1] C. Corduneanu, V. Lakshmikantham, “Equations with unbounded delay: a survey”, Nonlinear Anal., 4:5 (1980), 831–877 | DOI | MR | Zbl

[2] J. Hale, J. Kato, “Phase space for retarted equations with infinite delay”, Funkcial. Ekvac., 21:1 (1978), 11–41 | MR | Zbl

[3] Y. Hino, “Stability properties for functional differential equations with infinite delay”, Tohoku Math. J. (2), 35:4 (1983), 597–605 | DOI | MR | Zbl

[4] J. Kato, “Stability problem in functional differential equations with infinite delay”, Funkcial. Ekvac., 21:1 (1978), 63–80 | MR | Zbl

[5] S. Murakami, “Perturbation theorem for functional differential equations with infinite delay via limiting equations”, J. Differential Equations, 59:3 (1985), 314–335 | DOI | MR | Zbl

[6] G. R. Sell, “Nonautonomous differential equations and topological dynamics. I. The basic theory”, Trans. Amer. Math. Soc., 127 (1967), 241–262 | DOI | MR | Zbl

[7] A. S. Andreev, Ustoichivost neavtonomnykh funktsionalno-differentsialnykh uravnenii, UlGU, Ulyanovsk, 2005

[8] A. Andreev, N. Sedova, “On the stability of nonautonomous equations with delay via limiting equations”, Funct. Differ. Equ., 5:1–2 (1998), 21–37 | MR | Zbl

[9] A. S. Andreev, “Ob asimptoticheskoi ustoichivosti i neustoichivosti nulevogo resheniya neavtonomnoi sistemy”, PMM, 48:2 (1984), 225–232 | MR | Zbl

[10] S. V. Pavlikov, Metod funktsionalov Lyapunova v zadachakh ustoichivosti, Izd-vo In-ta upravleniya, Nab. Chelny, 2006

[11] N. O. Sedova, “K metodu Lyapunova–Razumikhina dlya uravnenii s beskonechnym zapazdyvaniem”, Differents. uravneniya, 38:10 (2002), 1338–1347 | MR | Zbl

[12] Z. Artstein, “Uniform asymptotic stability via limiting equations”, J. Differential Equations, 27:2 (1978), 172–189 | DOI | MR | Zbl

[13] W. E. Hornor, “Invariance principles and asymptotic constancy of solutions of precompact functional differential equations”, Tohoku Math. J. (2), 42:2 (1990), 217–229 | DOI | MR | Zbl

[14] J. Kato, T. Yoshizawa, “Remarks on global properties in limiting equations”, Funkcial. Ekvac., 24:3 (1981), 363–371 | MR | Zbl

[15] N. Sedova, “On employment of semidefinite functions in stability of delayed equations”, J. Math. Anal. Appl., 281:1 (2003), 307–319 | MR | Zbl

[16] L. B. Knyazhische, “Lokalizatsiya predelnykh mnozhestv i asimptoticheskaya ustoichivost neavtonomnykh uravnenii s zapazdyvaniem. I”, Differents. uravneniya, 34:2 (1998), 189–196 | MR | Zbl

[17] V. B. Kolmanovskii, V. R. Nosov, Ustoichivost i periodicheskie rezhimy reguliruemykh sistem s posledeistviem. Teoreticheskie osnovy tekhnicheskoi kibernetiki, Nauka, M., 1981 | MR | Zbl

[18] Dzh. Kheil, Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984 | MR | Zbl

[19] N. N. Krasovskii, Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959 | MR | Zbl

[20] B. S. Razumikhin, “Ob ustoichivosti sistem s zapazdyvaniem”, PMM, 20:4 (1956), 500–512 | MR | Zbl

[21] J. Haddock, J. Terjéki, “Liapunov–Razumikhin functions and an invariance principle for functional-differential equations”, J. Differential Equations, 48:1 (1983), 95–122 | DOI | MR | Zbl

[22] J. Haddock, J. Terjéki, “On the location of positive limit sets for autonomous functional-differential equations with infinite delay”, J. Differential Equations, 86:1 (1990), 1–32 | DOI | MR | Zbl

[23] N. O. Sedova, “Ob asimptoticheskoi ustoichivosti nestatsionarnogo rezhima raboty yadernogo reaktora s dvumya slabo svyazannymi aktivnymi zonami”, OPPM, 10:1 (2003), 215–216

[24] M. Parrott, “Convergence of solutions of infinite delay differential equations with an underlying space of continuous functions”, Ordinary and Partial Differential Equations (Proc. Sixth Conf., Univ. Dundee, Dundee, 1980), Lecture Notes in Math., 846, Springer-Verlag, Berlin, 1981, 280–289 | DOI | MR | Zbl

[25] G. Seifert, “Liapunov–Razumikhin conditions for asymptotic stability in functional differential equations of Volterra type”, J. Differential Equations, 16:2 (1974), 289–297 | DOI | MR | Zbl

[26] J. Terjéki, “On the asymptotic stability of solutions of functional differential equations”, Ann. Polon. Math., 36:3 (1979), 299–314 | MR | Zbl

[27] A. Strauss, J. A. Yorke, “Perturbing uniform asymptotically stable nonlinear systems”, J. Differential Equations, 6:3 (1969), 452–483 | DOI | MR | Zbl

[28] J. Kato, “Asymptotic behavior in functional differential equations with infinite delay”, Equadiff 82 (Würzburg, 1982), Lecture Notes in Math., 1017, Springer-Verlag, Berlin, 1982, 300–312 | DOI | MR | Zbl

[29] F. Atkinson, J. Haddock, “On determining phase spaces for functional differential equations”, Funkcial. Ekvac., 31:3 (1988), 331–347 | MR | Zbl