Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2008_84_6_a5, author = {O. F. Men'shikh}, title = {Conservation {Laws} of {Second} {Order} for the {Born--Infeld} {Equation} and {Other} {Related} {Equations}}, journal = {Matemati\v{c}eskie zametki}, pages = {874--881}, publisher = {mathdoc}, volume = {84}, number = {6}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a5/} }
TY - JOUR AU - O. F. Men'shikh TI - Conservation Laws of Second Order for the Born--Infeld Equation and Other Related Equations JO - Matematičeskie zametki PY - 2008 SP - 874 EP - 881 VL - 84 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a5/ LA - ru ID - MZM_2008_84_6_a5 ER -
O. F. Men'shikh. Conservation Laws of Second Order for the Born--Infeld Equation and Other Related Equations. Matematičeskie zametki, Tome 84 (2008) no. 6, pp. 874-881. http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a5/
[1] O. F. Menshikh, “O zakonakh sokhraneniya i preobrazovaniyakh Beklunda, svyazannykh s uravneniem Borna–Infelda”, Matem. zametki, 77:4 (2005), 551–565 | MR | Zbl
[2] N. Kh. Ibragimov, Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR | Zbl
[3] P. Olver, Prilozhenie grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | Zbl
[4] O. F. Menshikh, “O vzaimodeistvii finitnykh uedinennykh voln dlya uravnenii tipa Borna–Infelda”, TMF, 79:1 (1989), 16–29 | MR
[5] O. F. Menshikh, “Ob odnom obobschenii formul Veiershtrassa v teorii minimalnykh poverkhnostei”, Arifmetika i geometriya mnogoobrazii, Samarskii gos. un-t, Samara, 1992, 93–100 | MR | Zbl
[6] O. F. Menshikh, “O zadache Koshi i kraevykh zadachakh dlya odnogo klassa sistem kvazilineinykh giperbolicheskikh uravnenii”, Dokl. AN SSSR, 314:1 (1990), 105–110 | MR | Zbl
[7] B. L. Rozhdestvenskii, N. N. Yanenko, Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978 | MR | Zbl
[8] V. F. Zaitsev, A. D. Polyanin, Spravochnik po obyknovennym differentsialnym uravneniyam, Fizmatlit, M., 2001
[9] L. M. Berkovich, Faktorizatsiya i preobrazovaniya differentsialnykh uravnenii. Metody i prilozheniya, RKhD, M., 2002 | Zbl
[10] O. F. Menshikh, Ob odnom obobschenii uravneniya Borna–Infelda, dep. v VINITI 7920-V86
[11] V. M. Miklyukov, “Geometricheskii analiz poverkhnostei nulevoi srednei krivizny”, Geometricheskii analiz i ego prilozheniya, Volgogradsk. gos. un-t, Volgograd, 1999, 5–21
[12] Dao Chong Tkhi, A. T. Fomenko, Minimalnye poverkhnosti i problema Plato, Nauka, M., 1987 | MR | Zbl
[13] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR | Zbl
[14] B. M. Barbashov, N. A. Chernikov, “Reshenie zadachi o rasseyanii dvukh ploskikh voln v nelineinoi skalyarnoi teorii polya tipa Borna–Infelda”, ZhETF, 51:8 (1966), 658–668
[15] O. F. Menshikh, O klassifikatsii kvazilineinykh uravnenii vtorogo poryadka, dep. v VINITI 1081-V2005
[16] B. M. Barbashov, N. A. Chernikov, “Reshenie i kvantovanie nelineinoi dvumernoi modeli tipa Borna–Infelda”, ZhETF, 50:5 (1966), 1296–1308
[17] O. F. Menshikh, “O vzaimodeistvii uedinennykh voln dlya sistemy uravnenii Borna–Infelda”, TMF, 84:2 (1990), 181–194 | MR