Conservation Laws of Second Order for the Born--Infeld Equation and Other Related Equations
Matematičeskie zametki, Tome 84 (2008) no. 6, pp. 874-881

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe a class of quasilinear partial differential equations of second order with two independent variables in the general case of mixed type for which we construct conservation laws of second order which are quadratic with respect to the second derivatives. As examples, we present similar conservation laws for the Born–Infeld equation, for the equations of minimal and maximal surfaces in Minkowski space, and for the classical equation of minimal surfaces.
Keywords: quasilinear partial differential equation, Born–Infeld equation, conservation laws of second order, Minkowski space
Mots-clés : Abel equation, Laplace equation.
@article{MZM_2008_84_6_a5,
     author = {O. F. Men'shikh},
     title = {Conservation {Laws} of {Second} {Order} for the {Born--Infeld} {Equation} and {Other} {Related} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {874--881},
     publisher = {mathdoc},
     volume = {84},
     number = {6},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a5/}
}
TY  - JOUR
AU  - O. F. Men'shikh
TI  - Conservation Laws of Second Order for the Born--Infeld Equation and Other Related Equations
JO  - Matematičeskie zametki
PY  - 2008
SP  - 874
EP  - 881
VL  - 84
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a5/
LA  - ru
ID  - MZM_2008_84_6_a5
ER  - 
%0 Journal Article
%A O. F. Men'shikh
%T Conservation Laws of Second Order for the Born--Infeld Equation and Other Related Equations
%J Matematičeskie zametki
%D 2008
%P 874-881
%V 84
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a5/
%G ru
%F MZM_2008_84_6_a5
O. F. Men'shikh. Conservation Laws of Second Order for the Born--Infeld Equation and Other Related Equations. Matematičeskie zametki, Tome 84 (2008) no. 6, pp. 874-881. http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a5/