Conservation Laws of Second Order for the Born--Infeld Equation and Other Related Equations
Matematičeskie zametki, Tome 84 (2008) no. 6, pp. 874-881.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe a class of quasilinear partial differential equations of second order with two independent variables in the general case of mixed type for which we construct conservation laws of second order which are quadratic with respect to the second derivatives. As examples, we present similar conservation laws for the Born–Infeld equation, for the equations of minimal and maximal surfaces in Minkowski space, and for the classical equation of minimal surfaces.
Keywords: quasilinear partial differential equation, Born–Infeld equation, conservation laws of second order, Minkowski space
Mots-clés : Abel equation, Laplace equation.
@article{MZM_2008_84_6_a5,
     author = {O. F. Men'shikh},
     title = {Conservation {Laws} of {Second} {Order} for the {Born--Infeld} {Equation} and {Other} {Related} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {874--881},
     publisher = {mathdoc},
     volume = {84},
     number = {6},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a5/}
}
TY  - JOUR
AU  - O. F. Men'shikh
TI  - Conservation Laws of Second Order for the Born--Infeld Equation and Other Related Equations
JO  - Matematičeskie zametki
PY  - 2008
SP  - 874
EP  - 881
VL  - 84
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a5/
LA  - ru
ID  - MZM_2008_84_6_a5
ER  - 
%0 Journal Article
%A O. F. Men'shikh
%T Conservation Laws of Second Order for the Born--Infeld Equation and Other Related Equations
%J Matematičeskie zametki
%D 2008
%P 874-881
%V 84
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a5/
%G ru
%F MZM_2008_84_6_a5
O. F. Men'shikh. Conservation Laws of Second Order for the Born--Infeld Equation and Other Related Equations. Matematičeskie zametki, Tome 84 (2008) no. 6, pp. 874-881. http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a5/

[1] O. F. Menshikh, “O zakonakh sokhraneniya i preobrazovaniyakh Beklunda, svyazannykh s uravneniem Borna–Infelda”, Matem. zametki, 77:4 (2005), 551–565 | MR | Zbl

[2] N. Kh. Ibragimov, Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR | Zbl

[3] P. Olver, Prilozhenie grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | Zbl

[4] O. F. Menshikh, “O vzaimodeistvii finitnykh uedinennykh voln dlya uravnenii tipa Borna–Infelda”, TMF, 79:1 (1989), 16–29 | MR

[5] O. F. Menshikh, “Ob odnom obobschenii formul Veiershtrassa v teorii minimalnykh poverkhnostei”, Arifmetika i geometriya mnogoobrazii, Samarskii gos. un-t, Samara, 1992, 93–100 | MR | Zbl

[6] O. F. Menshikh, “O zadache Koshi i kraevykh zadachakh dlya odnogo klassa sistem kvazilineinykh giperbolicheskikh uravnenii”, Dokl. AN SSSR, 314:1 (1990), 105–110 | MR | Zbl

[7] B. L. Rozhdestvenskii, N. N. Yanenko, Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978 | MR | Zbl

[8] V. F. Zaitsev, A. D. Polyanin, Spravochnik po obyknovennym differentsialnym uravneniyam, Fizmatlit, M., 2001

[9] L. M. Berkovich, Faktorizatsiya i preobrazovaniya differentsialnykh uravnenii. Metody i prilozheniya, RKhD, M., 2002 | Zbl

[10] O. F. Menshikh, Ob odnom obobschenii uravneniya Borna–Infelda, dep. v VINITI 7920-V86

[11] V. M. Miklyukov, “Geometricheskii analiz poverkhnostei nulevoi srednei krivizny”, Geometricheskii analiz i ego prilozheniya, Volgogradsk. gos. un-t, Volgograd, 1999, 5–21

[12] Dao Chong Tkhi, A. T. Fomenko, Minimalnye poverkhnosti i problema Plato, Nauka, M., 1987 | MR | Zbl

[13] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR | Zbl

[14] B. M. Barbashov, N. A. Chernikov, “Reshenie zadachi o rasseyanii dvukh ploskikh voln v nelineinoi skalyarnoi teorii polya tipa Borna–Infelda”, ZhETF, 51:8 (1966), 658–668

[15] O. F. Menshikh, O klassifikatsii kvazilineinykh uravnenii vtorogo poryadka, dep. v VINITI 1081-V2005

[16] B. M. Barbashov, N. A. Chernikov, “Reshenie i kvantovanie nelineinoi dvumernoi modeli tipa Borna–Infelda”, ZhETF, 50:5 (1966), 1296–1308

[17] O. F. Menshikh, “O vzaimodeistvii uedinennykh voln dlya sistemy uravnenii Borna–Infelda”, TMF, 84:2 (1990), 181–194 | MR