Invariants of Conformal Transformations of Almost Contact Metric Structures
Matematičeskie zametki, Tome 84 (2008) no. 6, pp. 838-850.

Voir la notice de l'article provenant de la source Math-Net.Ru

The so-called structure tensors of almost contact metric structures, which play a key role in the geometry of almost contact metric structures, are explicitly calculated. The transformations of these tensors under conformal transformations of almost contact metric structures are described. The results obtained are used to study the behavior of the most interesting classes of almost contact structures under conformal transformations.
Keywords: almost contact metric structure, Hermitian metric, contact manifold, Sasakian structure, Riemannian connection.
Mots-clés : conformal transformation of a structure
@article{MZM_2008_84_6_a3,
     author = {V. F. Kirichenko and I. V. Uskorev},
     title = {Invariants of {Conformal} {Transformations} of {Almost} {Contact} {Metric} {Structures}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {838--850},
     publisher = {mathdoc},
     volume = {84},
     number = {6},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a3/}
}
TY  - JOUR
AU  - V. F. Kirichenko
AU  - I. V. Uskorev
TI  - Invariants of Conformal Transformations of Almost Contact Metric Structures
JO  - Matematičeskie zametki
PY  - 2008
SP  - 838
EP  - 850
VL  - 84
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a3/
LA  - ru
ID  - MZM_2008_84_6_a3
ER  - 
%0 Journal Article
%A V. F. Kirichenko
%A I. V. Uskorev
%T Invariants of Conformal Transformations of Almost Contact Metric Structures
%J Matematičeskie zametki
%D 2008
%P 838-850
%V 84
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a3/
%G ru
%F MZM_2008_84_6_a3
V. F. Kirichenko; I. V. Uskorev. Invariants of Conformal Transformations of Almost Contact Metric Structures. Matematičeskie zametki, Tome 84 (2008) no. 6, pp. 838-850. http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a3/

[1] S. Sasaki, Almost Contact Manifolds, Lect. Notes, 1–3, Math. Inst. Tôhoku Univ., Tôhoku, 1965–1968

[2] S. Kobayashi, “Principal fibre bundle with $1$-dimensional toroidal group”, Tôhoku Math. J. (2), 8 (1956), 29–45 | MR | Zbl

[3] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lect. Notes in Math., 509, Springer-Verlag, Berlin–New York, 1976 | DOI | MR | Zbl

[4] D. E. Blair, “The theory of quasi-Sasakian manifolds”, J. Differential Geometry, 1 (1967), 331–345 | MR | Zbl

[5] K. Kenmotsu, “A class of almost contact Riemannian manifolds”, Tôhoku Math. J. (2), 24 (1972), 93–103 | MR | Zbl

[6] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progr. Math., 203, Birkhäuser Boston inc., Boston, MA, 2002 | MR | Zbl

[7] D. Chinea, J. C. Marrero, “Conformal changes of almost contact metric structures”, Riv. Mat. Univ. Parma. (5), 1 (1992), 19–31 | MR | Zbl

[8] D. Chinea, J. C. Morrero, “Conformal changes of almost cosymplectic manifolds”, Rend. Mat. Appl. (7), 12:4 (1992), 849–867 | MR | Zbl

[9] Z. Olszak, “Locally conformal almost cosymplectic manifolds”, Colloq. Math., 57:1 (1989), 73–87 | MR | Zbl

[10] V. F. Kirichenko, V. A. Levkovets, “O geometrii $L$-mnogoobrazii”, Matem. zametki, 79:6 (2006), 854–869 | MR | Zbl

[11] V. F. Kirichenko, N. S. Baklashova, “Geometriya kontaktnoi formy Li i kontaktnyi anaglog teoremy Ikuty”, Matem. zametki, 82:3 (2007), 347–360 | MR | Zbl

[12] V. F. Kirichenko, Differentsialno-geometricheskie struktury na mnogoobraziyakh, Tipografiya MPGU, M., 2003

[13] Sh. Kobayasi, K. Nomidzu, Osnovy differentsialnoi geometrii, T. 2, Nauka, M., 1981 | MR | Zbl

[14] V. F. Kirichenko, A. R. Rustanov, “Differentsialnaya geometriya kvazisasakievykh mnogoobrazii”, Matem. sb., 193:8 (2002), 71–100 | MR | Zbl