Relations for Multiple Zeta Values
Matematičeskie zametki, Tome 84 (2008) no. 6, pp. 825-837.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove new relations for multiple zeta values. In particular, they imply Vasilev's equality and a formula for the summation of multiple zeta values of fixed weight with a constraint on the first coordinate.
Keywords: zeta function, multiple zeta values, Fubini's theorem, stuffle product (harmonic product) of zeta values, generating function.
@article{MZM_2008_84_6_a2,
     author = {S. A. Zlobin},
     title = {Relations for {Multiple} {Zeta} {Values}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {825--837},
     publisher = {mathdoc},
     volume = {84},
     number = {6},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a2/}
}
TY  - JOUR
AU  - S. A. Zlobin
TI  - Relations for Multiple Zeta Values
JO  - Matematičeskie zametki
PY  - 2008
SP  - 825
EP  - 837
VL  - 84
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a2/
LA  - ru
ID  - MZM_2008_84_6_a2
ER  - 
%0 Journal Article
%A S. A. Zlobin
%T Relations for Multiple Zeta Values
%J Matematičeskie zametki
%D 2008
%P 825-837
%V 84
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a2/
%G ru
%F MZM_2008_84_6_a2
S. A. Zlobin. Relations for Multiple Zeta Values. Matematičeskie zametki, Tome 84 (2008) no. 6, pp. 825-837. http://geodesic.mathdoc.fr/item/MZM_2008_84_6_a2/

[1] S. A. Zlobin, “Proizvodyaschie funktsii dlya znachenii kratnoi dzeta-funktsii”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2005, no. 2, 55–59 | MR | Zbl

[2] D. V. Vasilev, “Nekotorye formuly dlya dzeta-funktsii Rimana v tselykh tochkakh”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1996, no. 1, 81–84 | MR | Zbl

[3] S. A. Zlobin, “O nekotorykh integralnykh tozhdestvakh”, UMN, 57:3 (2002), 153–154 | MR | Zbl

[4] M. E. Hoffman, “The algebra of multiple harmonic series”, J. Algebra, 194:2 (1997), 477–495 | DOI | MR | Zbl

[5] E. A. Ulanskii, “Tozhdestva dlya obobschennykh polilogarifmov”, Matem. zametki, 73:4 (2003), 613–624 | MR | Zbl

[6] A. Granville, “A decomposition of Riemann's zeta-function”, Analytic Number Theory (Kyoto, 1996), London Math. Soc. Lecture Note Ser., 247, Cambridge Univ. Press, Cambridge, 1997, 95–101 | MR | Zbl

[7] Y. Ohno, “A generalization of the duality and sum formulas on the multiple zeta values”, J. Number Theory, 74:1 (1999), 39–43 | DOI | MR | Zbl

[8] T. Arakawa, M. Kaneko, “Multiple zeta-values, poly-Bernoulli numbers, and related zeta functions”, Nagoya Math. J., 153 (1999), 1–21 | MR | Zbl

[9] T. Aoki, Y. Ohno, “Sum relations for multiple zeta values and connection formulas for the Gauss hypergeometric functions”, Publ. Res. Inst. Math. Sci., 41:2 (2005), 329–337 ; arXiv: math/0307264v1 | DOI | MR | Zbl