Meyer Wavelets with Least Uncertainty Constant
Matematičeskie zametki, Tome 84 (2008) no. 5, pp. 732-740

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we construct a system of Meyer wavelets with least possible uncertainty constant. The uncertainty constant minimization problem is reduced to a convex variational problem whose solution satisfies a second-order nonlinear differential equation. Solving this equation numerically, we obtain the desired system of wavelets.
Keywords: Meyer wavelet, uncertainty constant, variational problem, second-order nonlinear differential equation, Sobolev space
Mots-clés : Fourier transform.
@article{MZM_2008_84_5_a8,
     author = {E. A. Lebedeva and V. Yu. Protasov},
     title = {Meyer {Wavelets} with {Least} {Uncertainty} {Constant}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {732--740},
     publisher = {mathdoc},
     volume = {84},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a8/}
}
TY  - JOUR
AU  - E. A. Lebedeva
AU  - V. Yu. Protasov
TI  - Meyer Wavelets with Least Uncertainty Constant
JO  - Matematičeskie zametki
PY  - 2008
SP  - 732
EP  - 740
VL  - 84
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a8/
LA  - ru
ID  - MZM_2008_84_5_a8
ER  - 
%0 Journal Article
%A E. A. Lebedeva
%A V. Yu. Protasov
%T Meyer Wavelets with Least Uncertainty Constant
%J Matematičeskie zametki
%D 2008
%P 732-740
%V 84
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a8/
%G ru
%F MZM_2008_84_5_a8
E. A. Lebedeva; V. Yu. Protasov. Meyer Wavelets with Least Uncertainty Constant. Matematičeskie zametki, Tome 84 (2008) no. 5, pp. 732-740. http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a8/