Meyer Wavelets with Least Uncertainty Constant
Matematičeskie zametki, Tome 84 (2008) no. 5, pp. 732-740.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we construct a system of Meyer wavelets with least possible uncertainty constant. The uncertainty constant minimization problem is reduced to a convex variational problem whose solution satisfies a second-order nonlinear differential equation. Solving this equation numerically, we obtain the desired system of wavelets.
Keywords: Meyer wavelet, uncertainty constant, variational problem, second-order nonlinear differential equation, Sobolev space
Mots-clés : Fourier transform.
@article{MZM_2008_84_5_a8,
     author = {E. A. Lebedeva and V. Yu. Protasov},
     title = {Meyer {Wavelets} with {Least} {Uncertainty} {Constant}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {732--740},
     publisher = {mathdoc},
     volume = {84},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a8/}
}
TY  - JOUR
AU  - E. A. Lebedeva
AU  - V. Yu. Protasov
TI  - Meyer Wavelets with Least Uncertainty Constant
JO  - Matematičeskie zametki
PY  - 2008
SP  - 732
EP  - 740
VL  - 84
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a8/
LA  - ru
ID  - MZM_2008_84_5_a8
ER  - 
%0 Journal Article
%A E. A. Lebedeva
%A V. Yu. Protasov
%T Meyer Wavelets with Least Uncertainty Constant
%J Matematičeskie zametki
%D 2008
%P 732-740
%V 84
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a8/
%G ru
%F MZM_2008_84_5_a8
E. A. Lebedeva; V. Yu. Protasov. Meyer Wavelets with Least Uncertainty Constant. Matematičeskie zametki, Tome 84 (2008) no. 5, pp. 732-740. http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a8/

[1] Y. Meyer, “Principe d'incertitude, bases Hilbertiennes et algèbras d'opérateurs”, Seminaire Bourbaki, 1985/86, Astérisque, 145–146, Soc. Math. France, Paris, 1987, 209–223 | MR | Zbl

[2] I. M. Johnstone, G. Kerkyacharian, D. Picard, M. Raimondo, “Wavelet deconvolution in a periodic setting”, J. R. Stat. Soc. Ser. B Stat. Methodol., 66:3 (2004), 547–573 | DOI | MR | Zbl

[3] Kumarayapa Ajith, Zhang Ye, “More efficient ground truth ROI image coding technique: implementation and wavelet based application analysis”, J. Zhejiang Univ. Sci. A, 8:6 (2007), 835–840 | DOI | Zbl

[4] G. B. Folland, A. Sitaram, “The uncertainty principle: a mathematical survey”, J. Fourier Anal. Appl., 3:3 (1997), 207–238 | DOI | MR | Zbl

[5] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, Fizmatlit, M., 2005

[6] E. A. Lebedeva, “Minimizatsiya konstanty neopredelennosti semeistva vspleskov Meiera”, Matem. zametki, 81:4 (2007), 553–560 | MR | Zbl

[7] B. M. Alekseev, E. M. Galeev, V. M. Tikhomirov, Sbornik zadach po optimizatsii, Nauka, M., 1984 | MR

[8] B. M. Alekseev, V. M. Tikhomirov, S. V. Fomin, Optimalnoe upravlenie, Nauka, M., 1979 | MR | Zbl