Sharp Estimates of Newton Coefficients of Univalent Functions
Matematičeskie zametki, Tome 84 (2008) no. 5, pp. 724-731

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the class of univalent holomorphic functions $F(z)$ in the unit disk which are normalized by conditions $F(0)=0$, $F'(0)=1$. Estimates for the moduli of the Newton coefficients of these functions are established. It is shown that these estimates are sharp.
Keywords: holomorphic function, Bieberbach's conjecture, divided difference of $n$th order, maximum principle.
Mots-clés : Newton coefficient
@article{MZM_2008_84_5_a7,
     author = {E. G. Kir'yatskii},
     title = {Sharp {Estimates} of {Newton} {Coefficients} of {Univalent} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {724--731},
     publisher = {mathdoc},
     volume = {84},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a7/}
}
TY  - JOUR
AU  - E. G. Kir'yatskii
TI  - Sharp Estimates of Newton Coefficients of Univalent Functions
JO  - Matematičeskie zametki
PY  - 2008
SP  - 724
EP  - 731
VL  - 84
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a7/
LA  - ru
ID  - MZM_2008_84_5_a7
ER  - 
%0 Journal Article
%A E. G. Kir'yatskii
%T Sharp Estimates of Newton Coefficients of Univalent Functions
%J Matematičeskie zametki
%D 2008
%P 724-731
%V 84
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a7/
%G ru
%F MZM_2008_84_5_a7
E. G. Kir'yatskii. Sharp Estimates of Newton Coefficients of Univalent Functions. Matematičeskie zametki, Tome 84 (2008) no. 5, pp. 724-731. http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a7/