Sharp Estimates of Newton Coefficients of Univalent Functions
Matematičeskie zametki, Tome 84 (2008) no. 5, pp. 724-731
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the class of univalent holomorphic functions $F(z)$ in the unit disk which are normalized by conditions $F(0)=0$, $F'(0)=1$. Estimates for the moduli of the Newton coefficients of these functions are established. It is shown that these estimates are sharp.
Keywords:
holomorphic function, Bieberbach's conjecture, divided difference of $n$th order, maximum principle.
Mots-clés : Newton coefficient
Mots-clés : Newton coefficient
@article{MZM_2008_84_5_a7,
author = {E. G. Kir'yatskii},
title = {Sharp {Estimates} of {Newton} {Coefficients} of {Univalent} {Functions}},
journal = {Matemati\v{c}eskie zametki},
pages = {724--731},
publisher = {mathdoc},
volume = {84},
number = {5},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a7/}
}
E. G. Kir'yatskii. Sharp Estimates of Newton Coefficients of Univalent Functions. Matematičeskie zametki, Tome 84 (2008) no. 5, pp. 724-731. http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a7/