Schmidt Modules and Some of Their Applications
Matematičeskie zametki, Tome 84 (2008) no. 5, pp. 681-692.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be an associative ring with unit. A nonsemisimple right $R$-module $M=M_R$ is referred to as a (right) Schmidt module if every proper (right) submodule in $M$ is semisimple, and a module $M$ is called a (right) generalized Schmidt module if $M$ is not a Schmidt module and each of its proper (right) submodule is either a semisimple module or a Schmidt module. A left Schmidt $R$-module and a left generalized Schmidt $R$-module are defined similarly. In the paper, a complete description of the structure of right Schmidt $R$-modules and generalized Schmidt $R$-modules is given, the existence of Schmidt $R$-submodules in any nonsemisimple Artinian module is established, and a complete description of nonsemisimple Artinian modules in which every Schmidt submodule is distinguished as a direct summand is presented. As corollaries, characterizations of (generalized) Schmidt modules over a Dedekind ring and over a matrix ring over this ring are obtained in the paper.
Keywords: Schmidt module, generalized Schmidt module, associative ring, Dedekind ring, semisimple module, Artinian module, local module
Mots-clés : Morita equivalence.
@article{MZM_2008_84_5_a4,
     author = {V. A. Vedernikov and N. V. Yakubovskij},
     title = {Schmidt {Modules} and {Some} of {Their} {Applications}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {681--692},
     publisher = {mathdoc},
     volume = {84},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a4/}
}
TY  - JOUR
AU  - V. A. Vedernikov
AU  - N. V. Yakubovskij
TI  - Schmidt Modules and Some of Their Applications
JO  - Matematičeskie zametki
PY  - 2008
SP  - 681
EP  - 692
VL  - 84
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a4/
LA  - ru
ID  - MZM_2008_84_5_a4
ER  - 
%0 Journal Article
%A V. A. Vedernikov
%A N. V. Yakubovskij
%T Schmidt Modules and Some of Their Applications
%J Matematičeskie zametki
%D 2008
%P 681-692
%V 84
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a4/
%G ru
%F MZM_2008_84_5_a4
V. A. Vedernikov; N. V. Yakubovskij. Schmidt Modules and Some of Their Applications. Matematičeskie zametki, Tome 84 (2008) no. 5, pp. 681-692. http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a4/

[1] O. Yu. Shmidt, “Gruppy, vse podgruppy kotorykh spetsialnye”, Matem. sb., 31 (1924), 366–372 | Zbl

[2] L. A. Shemetkov, “O. Yu. Shmidt i konechnye gruppy”, Ukr. matem. zhurn., 23:5 (1971), 586–590 | Zbl

[3] V. S. Monakhov, “Podgruppy Shmidta, ikh suschestvovanie i nekotorye prilozheniya”, Ukrainskii matematichnii kongres, 2001, Algebra i teoriya chisel, In-t matem. NAN Ukrainy, Kiiv, 2002, 81–90 | MR | Zbl

[4] F. Kash, Moduli i koltsa, Mir, M., 1981 | MR | Zbl

[5] I. Lambek, Koltsa i moduli, Mir, M., 1971 | MR | Zbl

[6] Obschaya algebra, t. 1, Spravochnaya matematicheskaya biblioteka, ed. L. A. Skornyakov, Nauka, M., 1990 ; т. 2, Справочная математическая библиотека, ред. Л. А. Скорняков, Наука, М., 1991 | MR | Zbl | MR | Zbl

[7] K. Feis, Algebra: koltsa, moduli i kategorii, t. 1, Mir, M., 1977 ; т. 2, Мир, М., 1979 | MR | Zbl | MR | Zbl

[8] N. Burbaki, Kommutativnaya algebra, Mir, M., 1971 | MR | Zbl

[9] A. G. Kurosh, Lektsii po obschei algebre, Fizmatgiz, M., 1962 | MR | Zbl