Schmidt Modules and Some of Their Applications
Matematičeskie zametki, Tome 84 (2008) no. 5, pp. 681-692
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $R$ be an associative ring with unit. A nonsemisimple right $R$-module $M=M_R$ is referred to as a (right) Schmidt module if every proper (right) submodule in $M$ is semisimple, and a module $M$ is called a (right) generalized Schmidt module if $M$ is not a Schmidt module and each of its proper (right) submodule is either a semisimple module or a Schmidt module. A left Schmidt $R$-module and a left generalized Schmidt $R$-module are defined similarly. In the paper, a complete description of the structure of right Schmidt $R$-modules and generalized Schmidt $R$-modules is given, the existence of Schmidt $R$-submodules in any nonsemisimple Artinian module is established, and a complete description of nonsemisimple Artinian modules in which every Schmidt submodule is distinguished as a direct summand is presented. As corollaries, characterizations of (generalized) Schmidt modules over a Dedekind ring and over a matrix ring over this ring are obtained in the paper.
Keywords:
Schmidt module, generalized Schmidt module, associative ring, Dedekind ring, semisimple module, Artinian module, local module
Mots-clés : Morita equivalence.
Mots-clés : Morita equivalence.
@article{MZM_2008_84_5_a4,
author = {V. A. Vedernikov and N. V. Yakubovskij},
title = {Schmidt {Modules} and {Some} of {Their} {Applications}},
journal = {Matemati\v{c}eskie zametki},
pages = {681--692},
publisher = {mathdoc},
volume = {84},
number = {5},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a4/}
}
V. A. Vedernikov; N. V. Yakubovskij. Schmidt Modules and Some of Their Applications. Matematičeskie zametki, Tome 84 (2008) no. 5, pp. 681-692. http://geodesic.mathdoc.fr/item/MZM_2008_84_5_a4/